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Abstract

This thesis explores and compares traditional and reinforcement learn-
ing (RL) methods of performing 2D flight path planning in 3D space. A
wide overview of natural, classic, and learning approaches to planning
is done in conjunction with a review of some general recurring problems
and tradeoffs that appear within planning. This general background then
serves as a basis for motivating different possible solutions for this specific
problem. These solutions are implemented, together with a testbed in
form of a parallelizable simulation environment. This environment makes
use of random world generation and physics combined with an aerodynam-
ical model. An A* planner, a local RL planner, and a global RL planner
are developed and compared against each other in terms of performance,
speed, and general behavior. An autopilot model is also trained and used
both to measure flight feasibility and to constrain the planners to follow-
able paths. All planners were partially successful, with the global planner
exhibiting the highest overall performance. The RL planners were also
found to be more reliable in terms of both speed and followability because
of their ability to leave difficult decisions to the autopilot. From this it is
concluded that machine learning in general, and reinforcement learning in
particular, is a promising future avenue for solving the problem of flight
route planning in dangerous environments.
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1 Introduction

The arrival of innovative machine learning (ML) techniques is presenting new
methods for solving old problems. For problems such as planning, traditionally
handcrafted algorithms are well suited to constrained and well-known domains,
but are often hard to use within more complex environments and action spaces.
One of the main reasons for this difficulty is that it is fundamentally hard to
capture the complexity of the real world in a simulation, accurately enough for
it to be used to make decisions that are efficacious when applied in the physical
world. Small errors accumulate over time, making real-world agents slowly drift
away from the intended trajectory. Adding complexity can help make the model
more accurate, but this also increases the number of states that the system can
be in, which in turn causes combinatorial explosions in many kinds of classical
decision-making algorithms. The number of possible things that can happen
simply becomes too many to be computable using practical limits on memory
and execution time.

Artificial neural networks have helped present a solution to this. Because
feed-forward neural networks have been mathematically proven to be universal
function approximators (Cs&ji et al., 2001), this means that they all (given a
sufficient number of neurons) have the capability of computing functions that
mimic, for example, real-world systems. This capability is however only theo-
retical and is limited by our ability to pick out fitting parameters in the neural
network. In other words, training the network, and doing inference with the
network, are two separate problems.

Supervised learning methods train models by using a set of known inputs,
feeding it through the neural networks, and comparing the computed output to
a corresponding set of known desired outputs. This is possible since the whole
inference step through the neural network is completely differentiable, which
allows for changing the values of the parameters depending on their partial
derivatives computed with respect to the difference between the output and
the desired output. Calculating these gradients is called backward propagation,
and using these to change the parameters to make the outputs converge, is
called gradient descent. These kinds of supervised learning methods have known
since the 1980’s (Rumelhart et al., 1986), but saw widespread adoption and
innovation in the 2010’s as a result of increased parallel computing capabilities,
abundant data, easier access through open source, and the realization of how
effective it was at capturing the dynamics of complex systems in comparison
with handcrafted methods.

One major shortcoming with this technique is however the need to know the
right answer of which the models should produce during training. Supervised
learning is for example suitable for classification (like machine vision and speech
recognition), prediction (weather forecasts, failure prediction), and generative
models (text and image generation). Within fields such as robotic control and
game-playing, supervised learning falls short. This is because, even though we
might know if the outputs of the model are desired or not, we do not know
specifically what those outputs should be in order to be desirable. For example,



if one has a robotic arm and wants it to pick up an object, one knows that it is
good if the output of the model leads to the object no longer being in contact
with the ground (we can arrive at this conclusion by using simulation or a
physical arm), but we do not know what specific movements should be executed
to lead to this outcome. In this setting, one can instead use Reinforcement
Learning (RL) algorithms. If supervised learning is like studying to learn the
right answers for an exam, RL is more like teaching a dog to do tricks by
giving treats as rewards. Fundamentally, the goal is to have an algorithm where
outputs that are good are reinforced and become more likely to be produced in
the future, and where undesirable outcomes are selected against. This can be
done by using Q-learning, which has the model estimate the value of each action
for every given state (OpenAl, 2018), or by using Policy Gradients (Peters,
2010), which learns to directly map between states and actions. Also needed is
some mechanism of exploration. This can for example be done by every now
and then doing something random, by adding noise to the chosen actions or
simply by rewarding exploration itself.

Previously, many RL algorithms were limited to discrete state and action
spaces. This limits their use to discrete problems, or forces the programmer to
introduce assumptions about the world when discretizing continuous systems.
In addition, the discrete representations are vulnerable to combinatorial explo-
sions, which limits the practical size of the search space. However, by applying
the mathematical theory behind Q-learning to neural networks, it has become
possible to create agents which can generalize, and in turn, have the capability
of acting in continuous state spaces. By using Policy Gradients, also continuous
action spaces can be achieved.

Famously, Deepmind’s Deep Q-Network (Mnih et al., 2013) could learn to
outperform humans in many Atari games despite only having as input the pix-
els of the game. However, problems arose for games where the times between
actions and subsequent rewards are too large. In general, long-term dependen-
cies have presented a problem, and even though there has been progress within
this field, RL still isn’t the go-to method for problems such as planning for the
future.

1.1 Project

This project was done on behalf of SAAB Aeronautics, and executed by Axel
Wickman as a candidate thesis together Erik Orjehag at Dyno Robotics, during
a 7-month period. How we divided the work between us can be found in Ap-
pendix A. The aim was to explore whether or not RL algorithms can be used
as a viable method of solving the specific problem of pre-flight path planning in
dangerous environments, as well as to compare the results with more classical
methods of planning. Because the project should be unclassified, this meant
we were unable to use previous work by SAAB, and needed to develop both
the simulation environment and the algorithms from the ground up. This, in
combination with the goal of the project being investigative, meant that there
was relative freedom in the way to approach the project’s aims.



The goal was to take inspiration from multiple sources when designing the
algorithms. The planning methods make use of traditional grid search, as well
as classical RL for neural networks. With the Multi-Channel Memory Buffer
(MuMB), the aim was to integrate knowledge from within multiple fields of
planning. The motivation behind using RL was to construct algorithms that
are flexible enough to be applied also outside of this specific domain, that avoid
making assumptions about what specific strategies should best be used, and
that leverage the capabilities that these kinds of models have to generalize.
For simplicity’s sake, and to facilitate GPU (graphics card) computation, this
method is also grid-based. By making this grid persistent and having it act
locally, it helps to solve the problem of retaining information during the time
that the plan is being refined, and also helps with explainability.

1.2 Purpose

This is an initial investigation that aims to explore the feasibility of using RL
techniques for flight planning. In the process of doing this, I also aim to create
a flexible framework that may be used by SAAB in the future for further ex-
ploration and development. These objectives mean that the research questions
will be somewhat loosely formulated and general, as their purpose is to provide
general guidance of appropriate future directions. To do this, I want to explore
how well the algorithms do, where they falter, and their general behavior. I
believe the following research questions treats these aims:

- How well can the implemented RL planning algorithms rival a hard-coded
approach in terms of performance?

- How well do different planning algorithms function depending on search
space size, in terms of execution time and plan quality?

- What strategies can be observed as being used by the different algorithms?

1.3 Delimitations

Much time was spent on developing the simulation environment, which left
less time for developing and tuning the rest of the algorithms. The benefit of
this is that the environment and general frameworks are constructed abstractly
and efficiently enough to be used for future investigations. The aim wasn’t to
develop fully optimized, state-of-the-art algorithms, but rather to investigate
the feasibility of different methods of solving the problem.

Algorithm-wise, I only focus on off-line planning (i.e. before flying starts),
and planners that use grid-based input (although some can produce continuous
output). Although some planners easily could be converted to produce 3D
paths, I choose to have them all produce 2D paths (through 3D space) in order
to keep all results comparable. Use is made of multi-threading and (single) GPU
computation, but the on-policy planner has to run single-threaded with a batch
size of one, for collecting the data.



1.4 Background
1.4.1 Planning in nature

In their book ” The cognitive psychology of planning” (2005), Morris and Ward
compiles bodies of knowledge about planning from multiple fields, and then
draws parallels between the discoveries made. Much of the work of under-
standing planning in humans has been done by observing the behaviors of Al
algorithms, and as a result, early models of human planning often contained
notions of searching state spaces. This systematic approach is described as top-
down planning, and involves very coordinated and deliberate thought processes.
As opposed to this, there are bottom-up models, suggesting planning in humans
is more opportunistic and that decisions are made as a result of conditions that
happen to emerge, rather than planned in detail ahead of time. What seems
clear is that both planning ahead and dealing with things as they come, have
their place depending on the situation (pp. 37-38). Which strategy that hu-
mans tend to employ depends on multiple factors, such as if the problem is
predicted to be easily solvable by perceptual means when it arrives, if there is
a requirement to be able to verbally motivate the decisions made, and if there
is an importance placed on speed or accuracy (pp. 41-42).

One of the main constraints that both humans and AI need to take into
consideration, is that of the limitation of working memory. Bottom-up planning
seems to involve lower-level brain functions, which doesn’t create as much cog-
nitive memory load as top-down planning does. This is for example evidenced
by people being unable to verbalize during high workloads in tasks that require
a high-level executive function (pp. 43-44). Knowing what work to do how
and when is therefore vital in order to conserve both the resources of working
memory, and time. This planning skill is learned, and the fact that there are
individual differences in performance between different types of planning tasks,
suggest that it involves many different brain function (p. 128). As with most
executive functions, planning seems to involve large areas of the brain - with
emphasis on the prefrontal cortex, which seems to play some role in sustaining
information over time (pp. 192-193). This specialization of function therefore
might lead one to believe that the process of planning is required to be highly
centrally controlled. However, evidence exists to the contrary.

Physarum polycephalum (Figure 1), or Slime mold as it is usually known, is
an acellular amoeba that is famous for its ability to make decentralized intelli-
gent decisions despite not having any nervous system. The creature forages for
food using protrusions (plasmodial tubes) extending with multiple concurrent
heads into an unknown environment. This results in a dynamically evolving net-
work of tubes that can be up to hundreds of square centimeters in size. These
tubes first explore and then optimize to be the thickest along the shortest path.
This gives the organism the ability to solve mazes (Nakagaki et al., 2000), op-
timize with respect to risk and food quality (Latty & Beekman, 2010), and
perform speed-accuracy tradeoffs (Latty & Beekman, 2011). This last ability
is important since the process of collecting information to base decisions on,



Figure 1: Physarum polycephalum growing on a tree trunk (Stoen, 2011).

is costly. This means that the organism likely would miss opportunities if it
had a strategy that would search the environment too thoroughly, but on the
other hand, would miss nutrients if it didn’t search thoroughly enough. This
kind of tradeoff is similar to the top-down/bottom-up tradeoffs we humans face
in our decision-making. Just like humans, the disposition can be influenced by
external conditions. We cannot directly tell P. polycephalum to think carefully,
but it is possible to add stressors such as light and hunger. For example, for
harder tasks, the mold will prefer to act quickly if there is a hazard present
(Latty & Beekman, 2011, p. 544). A reasonable assumption would be that this
kind of behavior comes from deep and complex internal mechanisms. However,
while much of how P. polycephalum’s functions remain unclear, research (Alim
et al., 2017) has suggested that the internal rules which enable this kind of dis-
tributed decision making are in fact relatively simple, and that the complexity
of behavior is an example of emergence.

1.4.2 Classical approaches

The field of classical pathfinding has existed since the 1950’s and relates strongly
to the field of computational search in general. Dijkstra’s algorithm (Dijkstra,
1959) solves the problem of finding the shortest path between one node (i.e.
state) and another, in a graph where the edges can have different weights (costs).



The algorithm initiates at the starting node and works its’ way outwards in order
to find the goal. Successively it updates the values of the connecting nodes along
the way with the cumulative value of their shortest route to the start and does
so by always choosing to next explore the node which has the smallest of these
values. This results in an algorithm that is complete, which means that it will
find a solution (if one exists) in a finite amount of time, and optimal, which
means that it is guaranteed to find the solution with the shortest existing path.

A drawback of this approach is that is blind. The only heuristic it uses
while conducting the search is that the shortest path so far is the one most
worth exploring. Since the act of exploring the path, lengthens it, this can
in many cases result in the head of the search moving across many different
fronts, which makes the algorithm inefficient both in terms of execution time
and memory usage. In addition, in order to use this algorithm in continuous
environments (like the real world), it needs to be discretized. In most cases, this
means turning the world into a grid. This makes it impossible for the algorithm
to navigate at a more precise scale than the scale of the grid. Making the grid
size smaller (or world bigger), increases the number of grid-points by the square
in a 2D world and by the cube in a 3D world. Also, a state often consists
of more than a location in space, and an action of more than a movement in
this space. If the agent should be able to, for example, attack targets in the
environment, this means that the computational complexity will increase vastly
with both the increased number of possible actions, and with the states (which
has to keep track of all the combinations of which targets have and haven’t yet
been destroyed).

Being relatively general, there has been a number of improvements to Dijk-
stra’s algorithms, which take advantage of the known specifics of the problems
in order to be more efficient. Likely the most famous of the grid-based algo-
rithms is A* (Hart et al., 1968). This relies on a heuristic function that depends
on the problem. This heuristic represents the estimated future cost to the goal
from a given node, which helps to guide the search by allowing A* to pick the
most promising state for exploration. The algorithm is always complete, and
optimal as long as the heuristic never overestimates the actual cost to the goal.
Often times it is sufficient to use a distance metric (such as Euclidean or Man-
hattan) as a heuristic. For other actions than spatial movement, what is and
isn’t a fitting heuristic however requires a deep understanding of the problem
dynamics.

Sampling-based planners are another solution to motion planning. Here, a
random sampling of the space is used as a first phase in order to build a con-
nectivity graph, which can then be quickly queried for paths. If the random
sampling happens close to the already explored state, this allows for sampling
even in infinite domains. This method often provides better speed and less
memory usage than search-based algorithms in large search spaces but comes at
the tradeoff of completeness no longer being guaranteed within finite time, al-
though a solution is guaranteed to become more probable with time (Elbanhawi
& Simic, 2014, pp.2-3). This kind of algorithm is an example of the usefulness of
randomness. Somewhat counter-intuitively, random algorithms can sometimes



outperform deterministic ones, owing to the fact that their internal process-
ing, with many samples, converges to desirable results and thus aren’t as likely
to perform poorly due to worst-case scenarios (Kleinberg & Tardos, 2005, p.
708). For example, if a sampling planner unknowingly enters a dead end, it
will still likely sample other places too, and thus be able to recover due to not
putting all the eggs in one basket. Furthermore, random algorithms can often
be advantageous because they may be simpler conceptually, easier to imple-
ment, and because they don’t need to use as much memory (p. 708). The
problems of getting stuck in local minima, the high computational cost, and
(for some algorithms) having to craft problem-specific heuristics, still remains
also for sampling-based planners.

1.4.3 Machine Learning approaches

Long-term memory has long been a challenge for many areas within ML. Even
though some progress has been made in retaining information through recurrent
mechanisms, such as LSTM’s (Hochreiter & Schmidhuber, 1997), and by using
attention mechanisms like Transformers (Vaswani et al., 2017), to filter large
amounts of information, strategic planning using an end-to-end machine learning
approach has proved more difficult. Early success was however found within
ML approaches in combination with explicit traditional tree search algorithms.
Maybe the most famous of these successes was that of AlphaGo (Silver et al.,
2017), which learned to play to the game of Go better than humans, in spite
of the very large search spaces. In this game, a neural network is trained using
RL and tasked with predicting the value and probability of doing a given action
depending on the current game state. This information is used by a Monte
Carlo tree search algorithm, which can predict how good a move will be with
consideration to the sequence of the likely future moves that will entail. This
works by the search repeatedly taking a random combination of possible moves
into the future, weighted by the networks appraisal, and then choosing the path
which tended to give the best results overall. In essence, this gives the algorithm
an imagination allowing it to look into the future. By choosing random paths
and working probabilistically (similarly to sample-based planning), large state
spaces could be understood well without being exhaustively searched.

However, this algorithm relies on hard-coded knowledge of the ways the
system can dynamically develop. This problem was solved by integrating an
old idea into a new method of planning. The Dyna-Q algorithm (Sutton, 1991)
uses an external model, which takes as input a state and an action, and predicts
the next state. This allows ”hallucination” into the future, which oftentimes is
cheaper than interacting with the actual environment. This can be turned into
a planning algorithm by combining it with traditional search (Oh et al., 2017).
By first letting the model encode the state to a latent representation, and then
tasking the model with predicting the resulting latent state representation, a
Monte Carlo tree search can be performed.

Gradually, the learning modules in the architectures of the planning algo-
rithms, became more and more important. One problem that remained was



that the actual dynamics of planning still were hard-coded (albeit stochastic).
The algorithms could learn to leverage the structure of the search by changing
the latent representation, but they could not learn the appropriate structure of
planning by themselves. The previous algorithms were also model-based in the
sense that they were explicitly trained to understand the dynamics of the envi-
ronment. However, computational capability and mechanisms that increase the
capacity of neural networks, have since improved. As a result, there has been a
shift back to model-free methods (Guez et al., 2019) where the mechanisms of
planning are implicitly approximated within the model as a means to an end of
solving the task, and is made possible by higher informational capacity. This
allows the algorithms to develop more generalizable, and thus flexible models,
which also have the capability of overtime iteratively improving the solution.

2 Method

The development of the program was done in milestones, after which we pre-
sented our progress to SAAB. For the first milestone, a development environ-
ment was chosen, created the world generation, implemented the rigid-body
physics, and added 3D visualization with GUI and a top-down minimap. For
the second one, the A* planner was added together with, aerodynamics, input
argument parsing, an ML-model workflow, and implementation of an RL au-
topilot was begun. The implementation of the autopilot was finished during the
last milestone, along with the implementation of the Local DQN planner, the
MuMB planner, and the evaluation metrics.

On startup, the program generates a random world. This world consists
of a heightmap terrain, no-fly zones, air defense systems, and a fighter jet.
Either automatically or manually, a goal position is then selected. This queries
the selected planner for a plan between the fighter jet’s position and the current
goal position. Once this plan is computed successfully, it is fed into the autopilot
(if enabled). The purpose of having an autopilot is to give an indication of the
plan’s feasibility. The pilot will do its best to blindly follow the plan, and will
do so either until the goal is reached, or the fighter jet crashes into the ground.

The overall performance metric that is used to compare the different plan-
ning algorithms, consists of a static evaluation of the plan, and the reward value
acquired after each planning and flying episode. The reward is used both as a
metric for performance analysis and as a signal to train the planning algorithms.
The value is calculated by summing the autopilot’s average ability to follow the
flight plan, and other aspects of the planned route, such as flight time, amount
of time in hazardous areas, and time performing of airspace violations.



3 Implementation

The following section details how the program described in the method was
implemented. The first step was to setup an environment environment, which
consists of choosing and installing all the necessary dependencies for general
program development, ML-model execution, and rendering, as well as tools for
version control and debugging. These choices then influence program structure
and flow, which is discussed next. Since performance is of key concern, much
effort is put on efficiency in terms of not wasting resources and parallel exe-
cution. In this so far relatively general framework, a specific simulation world
then is then implemented. What this environment consists of, how it is ran-
domly generated, and how it’s physics are simulated, is explained. Lastly, the
implementations of the intelligent algorithms are detailed. These are the au-
topilot and the different planners. The autopilot is an RL algorithm and thus
functions similarly to some of the planners, but does not follow their implemen-
tation structure due to having a different functional role. This role is to provide
insight into the followability of the plans generated, which it does together with
the plan quality metric, explained last.

3.1 General development environment

To simplify the setup of development environments on multiple machines, use
was made of multiple Docker containers (Version 18.09.1; Docker, 2021) based
on Ubuntu (Version 20.04; Canonical LDT, 2020) with Nvidia CUDA (Version
11.1; Nvidia, 2021) and OpenGL (Version 3.2; Khronos Group, n.d.) support.
Since Windows support was a priority, only dependencies with cross-platform
capabilities were used. Because of the importance of computational performance
in order to minimize training time and maximize the amount of data collection,
the choice was made to use C++ (Version 17; ISO/TEC JTC1, n.d.) as the pro-
gramming language. Being a compiled language that gives relatively low-level
control, enabled us to write efficient programs. As opposed to Python, which is
often used for ML applications, C++ offers significantly lower execution times
(Tamimi, 2020), arguably richer support for Object-Oriented Programming, as
well as multithreading support. CMake (Version 3.13; Kitware, 2018) was used
for build automation. On Linux, compilation was done with GCC (Version
8.3.0; Richard Stallman, 2019), and on Windows with MSVC19 (Version 16.8;
Microsoft, 2020). When using Docker, both compilation and program execution
were done inside the container.

LibTorch, a C++ binding to the popular PyTorch (Version 1.8.1; Facebook’s
AT Research lab, 2020), was used as an ML framework. LibTorch brings with it
a very large array of tensor operations, which can vastly be accelerated through
the use of the library’s GPU computation capabilities. This acceleration is made
use of if the hardware is available, and as a fallback, the computation can instead
be performed on the processor. Since I had previous experience with PyTorch,
it was possible to speed up development by making use of the incompatible
TorchScript-format. This allowed for first programming the models in Python



(Version 3.8.5; Python Software Foundation, n.d.) and then importing them
into the C++ code during runtime. In order to visualize the progress of the
training of the ML models, use was made of a C++ port (Version 570¢297;
RustingSword, 2020) of the Tensorboard client and added a Docker-container
that launches the server (Version 2.2; Tzu-Wei Huang, 2020). This allows us to
check in on training progress across the internet in real-time.

GLFW (Version 3.3; The GLFW Development Team, 2021) was used to
instantiate and manage windows and OpenGL contexts. OpenGL is a cross-
platform standard that allows efficiency for 2D and 3D graphics rendering using
the GPU. It is managed from within C++, but also requires shaders, which
are runtime-compiled programs written in GLSL and executed on the graphical
device. I also made some direct use of the CUDA API functions in order to
transfer data from OpenGL to LibTorch without the extra step of having to
copy the data back and forth to and from RAM. The library NanoGUI (Version
e9ecB8al; Wenzel Jakob, 2019) was chosen for creating GUI elements, because
of it’s OpenGL compatibility. JSON files were loaded using JSON for Modern
C++ (Version 3.9.1; Niels Lohmann, 2021), and arguments were parsed using
Argument Parser for Modern C++ (Version 1344889; Pranav Srinivas Kumar,
2021). Physics were simulated using ReactPhysics3D (Version ¢273e7c; Daniel
Chappuis, 2020).

As for other external tools, git (Version 2.20.1; Junio Hamano, 2021) was
used for version control, CLion (Version 2020.3; Jetbrains, 2021) and Visual
Studio Code (Version 1.56; Microsoft, 2021) as IDE’s, GDB for general debug-
ging (Version 9.2; The GNU project, 2020), and Valgrind (Version 3.17.0; Julian
Seward, 2021) for checking for memory leaks.

3.2 Program structure

The decision was made to use object-oriented programming, which means that
the structure of the program is almost exclusively derived from classes that are
instantiated into objects. This has the advantage of keeping the program highly
structured and modular. By using abstraction and templating, I tried to keep
interfaces and structure general, as to help with flexibility in case there is a need
to further develop the program in the future.

One big structural challenge was to enable the program to function both in
single-threaded headed mode and in multi-threaded headless mode. In headed
mode, a single-window is launched and everything is visualized for the user. In
headless mode, no visible windows are launched, and all program output only
happens through the terminal (with the exception of Tensorboard logs, and
saved models). Since rendering using OpenGL has to be done also in headless
mode, it was needed to initialize OpenGL contexts regardless. The easiest
available way of doing this was by using GLFW to ask the operating system
to launch hidden windows. Given that it is not uncommon to use up to 1000
threads, and every thread needs its own context, this approach brings with it
performance concerns and is a potential point of improvement for the future.

For efficiency’s sake, all renderable objects in the scene have a function to

10



initialize rendering. This function only gets called in headed mode, meaning that
loading 3D meshes and textures to RAM, and uploading this data from RAM
to GPU, only is done if and when actually needed. This data is also handled
statically, which means that all instances of a specific renderable object, share
this data (and shaders), which minimizes memory usage. It is also possible to
disable features that aren’t needed for a given simulation, such as the map, air
defense systems, or Tensorboard logging, by using program input arguments.

While some features can be toggled off and on in the GUI during runtime, full
control of the program state is given during launch through use of the terminal.
Settings such as the thread count, whether to restart on crash, how often the
world should be randomized, what planner to use, and if training should be done,
can all be set. Given a large number of input parameters, and the need to often
repeatedly use the same inputs, configuration files were added. These are JSON
files, and the data in them are treated as program arguments. It is possible to
import configuration files recursively, with the shallower arguments overriding
the deeper ones. This means that one can have one specific world configuration
defining world size and terrain, and then have multiple dependant files that
configure for training the pilot, training the planner, and doing evaluation, for
this specific kind of world.

Figure 2: Threading model. Computation is done in parallel in threads on
the processor (CPU). When needing to compute using LibTorch, all threads
synchronize. The last one to arrive collects the data, issues the commands to
the GPU, writes the result in all other threads, and then releases all the other
threads.

Parallel processing can vastly speed up computation. Most computers have
concurrent execution abilities in the processor, and in the GPU. The processor
threads share RAM memory which each other, but cannot safely read and write
to each other’s memory without risking corruption. This problem is solved
using thread synchronization. By using tools like atomics and mutezes, threads
can perform safe data manipulation, and wait for each other to finish certain
tasks. The disadvantage of synchronizing too much is that threads will a long
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time spend time waiting, decreasing the efficiency of the program. One way to
alleviate this is to minimize synchronization. Therefore all world generation,
physics simulation, and rendering, happening separately in each thread with
no interaction. Another way to increase efficiency is to increase the number
of threads. Why this works is slightly counter-intuitive, given that a processor
often only has a handful of cores. Yet, a greater amount of simulation seconds
per real-world second is observed when using threads exceeding the core count.
I believe this is because every thread takes a slightly different amount of time to
execute, meaning that for 4 threads (on a 4-core system), if one is slightly slower
than the others, they all have to wait for it during synchronization. If however
there are 1000 threads, and one core is a bit slower, the remaining three cores
can start computing the rest of the threads immediately without synchronizing.

As for GPU computation in LibTorch, data is processed most effectively
by the processor issuing few, but large, workloads. In the threading model
(Figure 2), all the threads are therefore concurrently ran on the processor, have
all threads wait for each other to be done, let the last one to finish read data
from itself’s and the other thread’s memory, tell LibTorch to perform GPU
computation on this data, write the computed data into the common memory,
release all the threads, and repeat. This loop happens for every Al update
(generally about 15Hz simulation time).

3.3 Environment
3.3.1 World generation

World generation happens with the help of pseudorandom number generation.
All generation is based on a seed, which is the value that the random number
generator bases the returned values on. It is possible to regenerate a world
identically by setting the seed to be the same as before. Since the world usually
needs to be different on each generation, the seed is set to be equal to the current
time.

The first step in generating the world is to get a random number from the
number generator to seed a 2D Perlin noise generator. Perlin noise (Perlin,
1985) is a common technique used within computer graphics to create procedu-
ral random textures. Unlike pure noise, there is covariation within the pixels,
resulting in a cloud-like image. By changing the frequency of this noise, and
overlaying multiple weighted layers of it, the look of the texture can be cus-
tomized according to the project needs. By interpreting the output value of the
noise as a height value, a dynamic terrain is created. Instead of trying to mimic
realistic mountains and valleys, I choose to construct more maze-like structures
with a clear distinction between high and low altitudes. Perlin noise was also
used to generate no-fly zones (allowed, not allowed) and territories (ally, enemy,
disputed). In this case discretization is performed by thresholding the output
values. This process generates a 2D grid, which is then projected into 3D space
using scaling factors. This is results in worlds such as the one in Figure 3.

Air defense systems are scattered around the map and serve as hazards
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Figure 3: Example of generated world with size 5002500210m?. Red areas
are no-fly zones, and orange spheres represents reach of air defense systems.
Territories aren’t visualized, but causes air defense systems to group.

within a certain range. They generate most commonly on enemy territory, and
sometimes on disputed territory, which makes them a bit more clustered. They
all have a hard-coded reach distance of 150 meters.

3.3.2 2D Map

For the purposes of visualization and as input to the planning algorithms, it was
decided to implement a top-down 2D map (Figure 4). This map is rendered in
OpenGL and contains terrain height, no-fly zones, territories, air defense system
positions, and the current plan. The map is always centered on the fighter jet
and is rotated in such a way that the forward direction in 3D space becomes
the up direction. The map is rendered every Al update, or when planning
starts, and can be configured in multiple ways. For the purposes of simplifying
computation for the neural network, it has a mode where different information
is segregated into the different color channels (red, green, blue, alpha).

3.3.3 Rigid-body physics and aerodynamics

The physics system uses the library ReactPhysics3D. This library handles New-
tonian simulation of objects, including forces, collision detection, collision han-
dling, and ray-casting. Because the distances are big, not much effort was put
into modeling accurate collision boxes. Instead, the fighter jet is encapsulated
by a single bounding box. Conveniently, a height field primitive was already
implemented, which could be used to enable collisions with the terrain. Air
defense systems have no colliders.
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Figure 4: Rendered map with human readable colors. Center marker represents
fighter jet and is always oriented upwards. The gray lightness corresponds to
the height of the terrain. Yellow dots are air defense systems, and the red
checkerboard pattern is no-fly zones. The blue transparent area is ally territory,
red transparent is enemy territory, and uncolored disputed territory.

However, there is no native implemented support for aerodynamics in the
library. This could instead be achieved by computing the forces of wings manu-
ally at every physics update and then telling ReactPhysics3D to apply the forces
at the corresponding locations. This was done by defining a new type of physics
primitive; an aerodynamic surface. These contain information about their chord
and span, relative location and rotation, flap area percentage, skin friction, and
stall angles. For the most part, the math behind this kind of simplified aerody-
namics model consists of relatively standard and simple vector and quaternion
operations. The most challenging variables to find are the coefficients of lift,
drag, and torque. These vary during flight depending on the angle of attack and
are often calculated experimentally. Since experimental determination was out
of the scope of the project, I instead choose to use an approximation method
developed by Khan and Nahon (2015). This method, originally used to model
toy airplanes, makes use of thresholds and sinusoids to create functions that
liken real coefficients in situations of normal flight, at low angle of attack, and
at stall. The method also has support for making a fraction of the surface con-
trollable. This enables us to manually (or automatically using the autopilot),
control the plane exclusively by modifying the angles of the control surfaces.
The airplane’s wings are modeled using 5 aerodynamic surfaces (Figure 5).
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Figure 5: Fighter jet flying with aerodynamic forces visualized. The black
lines are drawn from the center of mass forwards, and along the direction of
movement (linear velocity). The black line coming from the engine represents
current thrust force. The blue transparent areas are aerodynamic surfaces. Each
of these have a red line representing drag force, a blur representing lift force,
and a black representing air velocity.

3.4 Al models

The AT algorithms are all divided into three parts: the invoker, the reinforcement
learner, and the model. The invoker is the algorithm that makes use of a
specific AI model. These are the autopilot and the planners. The reinforcement
learner is an algorithm that does thread synchronization, data accumulation,
Tensorboard logging, and takes care of the training of the model (turning on
and off gradient retention, setting optimizer, defining loss function, etc.). There
are a couple of reinforcement learner implementations, which will be explained
in detail later. The model is defined in PyTorch, converted to TorchScript
and then imported during runtime. This defines the actual structure (a neural
network), computation and learning parts of the algorithm. Ideally, all these
three components would be interchangeable, but creating structure abstract
enough to do this was deemed out of the project’s scope.

3.4.1 Autopilot

The role of the autopilot is to constrain the planners to generate practically
followable plans. It takes as input a current state, and produces a vector of
bounded numbers corresponding to the thrust of the engine, and the angles
of all flight control surfaces. It is trained using an off-policy, model-free and
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Figure 6: Autopilot steering fighter jet according to a plan generated by the
random planner. The blue lines represents the start and the goal, the red line
the plan, and the light green the already flown path. The dark green line is
drawn between the fighter jet and the next waypoint to be reached.

continuous action-space RL algorithm called Normalized Advantage Function
(NAF), invented by Gu et al. (2016). It is not the state of the art performance-
wise, but served well as an initial RL algorithm to implement and develop a
workflow around.

In short, the algorithm works similarly to Deep Q-learning (explained below),
but with the constraint of having to train on a continuous action space. The
structure of the reinforcement learner is here closely connected to that of the
policy. Like many other RL algorithms, the value of a given action (a) in a
certain state (s) is separated into two terms:

Q(s,a) =V (s) + A(s,a)

Where V() can be seen as representing the average value of being in a certain
state, and A(s,a) being the advantage of a certain value compared to others.
A trick in NAF is to define the advantage in such a way that it depends on the
current policy, in addition to the given action (performed by other policy). This
makes the only way to have Q(s, a) converge towards the reward r, to have the
policy converge to the optimal action.

In addition to this, two other techniques are used. For one, instead of training
on data that has just been collected by the policy, state transitions (s, a,r, s, a’,
where prime symbol represents the variable’s subsequent value) are stored in a
replay buffer. This memory is sampled randomly for every training step, which
makes the algorithm off-policy (as opposed to on-policy). This has the benefit of
being able to train using bigger batch sizes, as well as getting a greater diversity
of samples for every training step. The second technique is called double Q-
learning and means selecting the action, and evaluating the action, is done by
two different, but often structurally identical, networks. Gradient descent is
then performed on the evaluation model, after which the policy model has its
parameters changed towards the other model’s with a certain percentage. This
causes the policy model to ”lag behind”, and helps with the problem state’s
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values otherwise tending to be overestimated.

The NAF is invoked by the pilot, which is responsible for gathering inputs,
applying outputs, and returning a reward. The pilot starts to function after
being given a plan. This plan consists of waypoints, which are locations in 3D
space. Every time step, the pilot evaluates if a waypoint has been passed (if it is
closer than 150 meters, or if the subsequent waypoint is closer) and if so moves
the target waypoint forwards in the plan by one (as seen in Figure 6). The inputs
to the model consist of the fighter jet’s current speed, and 3-component vectors
of upwards direction, angular velocity, linear velocity (¥), delta to next target
waypoint (&wp), and delta to the second next target waypoint. The last three
of these are made relative to the current orientation through a change of basis
operation. All outputs are constrained between -1 and 1 using a tanh-function.
The reward function r is defined by the following:
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Where t,, is the time in seconds it took to pass the waypoint from the
previous waypoint, rpgsseqd represent whether a waypoint just has been passed
(1) or not (0), and r.,.qsp if fighter jet has crashed with the ground. The following
coefficients to function well: Cq =1, C¢y = 0.2, C, =1, and C. = —2.

Since the planners depend on the autopilot when training, the autopilot
can’t depend on plans generated by them to train. Thus, a random planner
was implemented. This creates a path with a random offset, and a somewhat
persistent but changing speed. The autopilot then tries to follow this plan until
it crashes into the ground, in which case the simulation restarts.

3.4.2 A* planner

A* (Hart et al., 1968) was chosen as a traditional planning method to compare
against. As mentioned earlier, it is grid-based and relies on a heuristic function
to guide its search in an appropriate direction. It makes use of so-called dynamic
programming, which means that it solves the problem of finding its way to the
goal by progressively computing solutions to subproblems.

In this case the heuristic function fL(nC)7 where n. is the current node, is
defined as the 2D distance between the node and the goal. This estimates the
cost of getting to the goal. The cost function, g(n,, n.), is the accumulated cost
of getting from the start the current node n., given the previous node n,, and is
defined as the sum of the g,qiue(np), the distance between the nodes, the cost of
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striking an air defense system if this was done, and the number of air defenses
within reach times the cost of being near them.
Using these, the following function can be defined:

f(npan) = g(np, n0> + il(nc)

The update rule for the current node’s g-value and f-value are as follow
(where the prime symbol represents the subsequent value):

/ Guvalue (nc) g(npa nc) > gvalue(nc)
gvalue(nc) =
g(npv nc) g(npa nc) < Guvalue (nc)

f/ . (n ) _ fvalue(nc) . g(np,nc) > gvalue(nc)
value gvalue(’flp) + h(nc) g(np, TLC) < gvalue(nc)

The first step is to add the starting node to an ordered queue called the fron-
tier, which sorts values low-to-high depending on fy4iue(n). Since the starting
node doesn’t have a previous node, let gyaiue(Mstart) = 0, and foaiue (Nstart) =
fl(nstmt). In addition to this, the node is marked as being open. This constitutes
the initialization, and is succeeded by the following loop:

Open the node with the lowest fy,qie(n) in the frontier, and remove it from
the set and unmark it as open. Check if it is the goal state, and if so, break
the loop and reconstruct the path. Else, find all the node’s valid neighbors.
Loop through each neighbor, and update their ¢/ ,..(n) and f/ .. (n), and if
9(np,ne) < Gualue(Ne), store the previous node as the origin, and add the node
to frontier marked as open. This process continues for a maximum of iterations
equal to the total number of world grid points.

It is when defining a node’s neighbors that the possible actions of the fighter
jet are defined. This includes 2D movement in a 3x3 (with the middle position
excluded) square, and is only possible if the node is above ground and not in a
no-fly zone. In addition, the agent can choose to attack any air defense system
within reach, which results in it being registered as eliminated.

For efficiency’s sake, the states have a hash function defined. This function
expresses the state as a 64-bit hashmap (a list of zeros and ones), which can be
used by the computer to easily sort and lookup states. Because of the size of the
hashmap, a situation might appear where two different states are expressed the
same. If this becomes the case, a function manually (and slowly) compares the
states. The layout of the hashmap depends on the world size. The first bits must
represent the possible locations and thus has a length of |logy (W, * W) + 1)),
where W is a vector of the world size. The rest represents the combinations of
alive and eliminated air defense systems.

The following would be a hashmap for a world size of W, = 500, W, = 500:

000000000000000000 0000000000000000000000000000000000000000000000

locations air defense system statuses
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3.4.3 Local DQN planner

Deep Q-Networks (Mnih et al., 2013), or DQN’s, is a kind of RL algorithm
applied to neural networks. They have the ability to learn from high dimensional
input, and can by using convolutional layers, learn to act on visuals. This
made makes DQN suitable for building a planner which can navigate using the
map as input. Because I wanted to compare the difference of having only local
knowledge versus having a global overview would have on performance, I choose
this technique to create the local planner.

The idea behind DQN, and other Q-learning methods, is to create a function
approximate that estimates the value of performing any possible action for a
given state. It is then possible to perform the action which is predicted to give
the highest future reward. This means that the method inherently only supports
discrete action spaces. In addition to this, there is a certain percentage chance
(e(2), where 4 is current iteration) of picking a completely random action, which
is the mechanism of exploration. The estimate of the action-value function,
Q(s,a), can be made to converge towards the optimal policy as i — oo, by
updating it with a value iteration using the Bellman equation:

Q'(s,a) =E[r + 7 mazyQ(s',d')]s, a]

Where r is the reward, « the discount factor, and E the expectation opera-
tor. This means that the new estimate produced by the action-value function
depends on its own estimate of the highest possible reward return given a cer-
tain action and state. In practice, however, this function is not updated directly
but rather made to converge towards the new value. For neural networks, this is
done much like a standard supervised problem, where a loss function is defined
(Smooth L1), the model is backward propagated, and the parameters of the
network updated using an optimizer (in this case RMSProp). A replay buffer is
also used for training.

The input state to the algorithm consists of two tensors; a vector representing
the relative coordinates towards the goal and of the distances to the air defense
systems, and a zoomed-in, color segregated 2D map centered around the current
position. This is fed into the model, which returns a vector representing 6
actions. The model feeds the vector through two fully connected networks with
a hidden size of 32. The map is fed through three convolutional layers, and
then two separate fully connected layers. These outputs are concatenated, and
then put through three more fully connected layers which output values for all
the actions. Action 1-5 representing various degrees of turning, and action 6
represents attacking the closest target. When planning, these actions are fed
into a simple, virtual agent which can move around the map in 2D. This virtual
agent returns the next state together with reward:

r?istance _ 1/(0.001d;]_oal + 1)

T;hf’eat — Z ma_qy(07 6.1‘]?(1 - dj) - 1)
ac€ADS

19



attack __

J

{ 1 if attacking and in reach
r

—0.01 if attacking and not in reach
height
"
no—fly
"

is - g height —fl
T,;,_otal _ Cd,r,}izstance + Ct,,,;f_hTeat + Ca,,,;_lttack + Cth elg + CnT;w fly

height
mean(m; )

= mean(m?o_ﬂy)

Where djg-oal is the distance to the goal, ADS are a set of all air defense

systems, and dj is the distance to a given air defense system. The variables

m"e9ht and m;w*f ' represent matrices of the current map’s height and no-

fly zone values. The coefficents used are: Cy; = 1, C; = —10, C, = —10,
Cp = —0.001, and C,, = 0.001. In addition to this, at a set interval, the
autopilot tries to fly the set plan and gives it’s average reward as feedback to
the reinforcement learner.

3.4.4 Multi-Channel Memory Buffer planner

To solve the problem with only having information about the local surroundings,
as well as not being able to backtrack, an experimental global planner was also
designed. The Multi-Channel Memory Buffer (MuMB) planner was inspired by
the distributed, locally acting, intelligence of P. polycephalum. Working locally
and adding recurrence, allows the algorithm to work iteratively as well as solves
the problem of handling different sized input maps.

Proximal Policy Optimization (Schulman et al., 2017), or PPO, is a kind
of policy-gradient RL algorithm developed by OpenAl and has been used in
many domains to achieve state-of-the-art performance. Unlike DQN and NAF,
it is on-policy, and this implementation therefore only supports single-threaded
training without a long-term replay buffer. The core idea behind PPO is to
define multiple training objectives that should be optimized and that weigh
against each other. For one, there is a so-called critic, which is a neural network
that tries to predict the discounted rewards given a current state (v;). Training
happens in batch sizes of 128, and because the algorithm is on-policy, this means
that this also becomes the frequency of the training steps. The true discounted
rewards r; are calculated at each training step and is calculated by backward
iterating through the rewards and letting r; = ~r;41, where i is the current
step, and ~ is the discount factor. The prediction of the critic is subtracted
from the actual return, giving a value (/L), representing how much better the
actor performed than expected. The actor is able to output continuous actions,
and does this by having the model output a mean and standard deviation, which
is then randomly sampled from a normal distribution.

The following loss function is then defined:

LYF =E[(ri = 73)?]
Teurrent (a | 5)

plals) = Tora(a]s)
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LY — mlmin(p(als)As, clip(p(als), 1 — e, 1+ €)A;)]
L;SUM — LlVF _ LiCLIP

Where 7eyrrent(als) and myq(als) denotes the probabilities of performing
the given action in the current policy, and for when the policy when the action
was taken. The € is a small value used to limit the maximum step size. The
function min picks the lower of the parameters, and clip thresholds the first
parameter between the second and third. Note that PPO typically also has
an objective that maximizes entropy and thus encourages exploration, but that
this was deemed unnecessary in this case. This loss function has the effect of
the critic trying to predict the reward accurately, and the actor always trying
to outperform this expectation.

AvgPool2D
flatten relu relu
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‘ Reward estimate
Map
Cax ) tanh tanh
Goal position
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Figure 7: Diagram of Multi-Channel Memory Buffer model. The input to the
network is the color segregated map channels, and two channels representing the
component vector at each point towards the goal. This data is concatenated
with the memory buffer, put though two convolutional layers, sampled from,
and then used to update the memory buffer. This happens in a loop 10 times,
after which the two first channels in the buffer are read as a flowfield in order to
extract a plan. The critic (top part), tries to predict the resulting reward using
a fully connected architecture.

21



The model used (Figure 7) is relatively simple. It relies on a memory buffer
(B) which is of the same 2D size as the map. This buffer has 4 channels and
servers as both the input and the output to the network. As input (s) it takes a
map of the whole world (with color segregated), a normalized x and y vector of
direction towards goal at every piled, and the buffer itself. This is ran through
two convolutional layers (kernel size 3x3), with tanh activation in between. The
output of this network (f(s)) is used to update the memory buffer according to:

B'=7yB+ (1 =7)f(s)

Where v is a number between 0 and 1. The value v = 0 was found to
work the best. This is then ran in a loop for 10 iterations. Normally, PPO
samples randomly from all actions, which in this case would be a large amount
of pixels. However, this would mainly result in noise across the image and thus
wouldn’t result in exploration due to there being no consistent policy changes
being tested. Therefore, noise is added to the convolutional kernels at each
inference step, and then reset. This will thereby affect the buffer in a more
consistent manner, which was found to help with model convergence greatly.

At each step in the refining process (when training), a plan is extracted from
the first two channels by interpreting each pixel as a vector, normalizing it, and
scaling it with a factor. This plan then has a static reward extracted, which is
fed into the PPO during the next step. For every n’th plan, the autopilot tries
to fly it, and the average reward of the autopilot is given as feedback to the
PPO.

3.5 Plan quality metric

Every plan can be statically evaluated, without actually having been flown, in
order to get a reward quickly. This reward is used both for training, and as
a metric for evaluating performance. The value is the mean of the individual
reward for all waypoints T;-Up , which are defined by the following equations:

distance __ || Nwp _ [ Xwp

nofly 1 ifinno fly zone
T. v =
J 0 ifmnotinno fly zone

d
paroun

J = min(wpy — terrain(wpy, wp.) — 10,0)

i l d
T;UP — Cd r;lzstance + Cn ,r,;wf Yy + Cg T?roun

Where j is the waypoint’s index, 5}”’ is the waypoint’s distance to the goal,
wp, is the waypoints y-coordinate in space, and terrain(z, z) is the height of
the terrain at a given 2D position. The constant were set to the following values:
Cy=0.1,C, =-05,and Cy = —0.2.
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4 Results

4.1 Performance

All planners were tested for world sizes of 3752375210 m?, and 5002500210 m?.
The fighter jet always starts in the middle of the world, and a goal is a uniformly
sampled random point. 3500 plans were collected for each planner, and their
results were logged. Note that all planners can return Not-a-Number (NAN)
static and pilot rewards when a plan failed to be generated. These values are
excluded from the average and variance calculations. The reward and pilot
reward mean, median, and percentiles were found and plotted in Figure 8 and
9, as well as listed in Table 1. Note that, because some values are excluded, the
true performance may be lower by varying degrees.

Execution time was also measured for the whole planning process. This data
was computed and plotted across the world sizes for every algorithm (Figure
10). For each planner, the data for both world sizes were also merged, and a
Spearman’s rank correlation coefficient was performed between execution time
and the distance between the start and the goal. This gave ry = 0.246 for
A* rs = 0.443 for the Local DQN planner, and r; = 0.456 for MuMB, with
p < 0.001 and N = 3499 for all. Note that the first iteration was removed here
since it is vastly slower than the coming ones due to caching not having been
done yet.
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Figure 8: Box plot of static reward with NAN’s filtered. Markers to left of boxes
represents individual values.
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Figure 9: Box plot of pilot reward. Box plot of static reward with NAN’s
filtered. Markers to left of boxes represents individual values.
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Planner performance
Planner and | Mean Median | Mean Median | NAN NAN

world size static static pilot pilot pilot pilot
reward | reward | reward | reward | reward | reward
A* 375 -23.66 -23.83 0.25 0.32 66.4% 69.9%
A* 500 -23.81 -24.02 -0.14 0.01 68.1% 71.6%
| L.DQN 375 | -33.08 |-32.10 |0.11 | 038 [0.0% |27% |

L. DQN 500 | -32.78 -32.15 -0.10 0.24 0.0% 0.4%

MuMB 375 -19.19 -18.22 0.58 0.58 0.0% 16.5%
MuMB 500 -19.01 -18.09 0.58 0.57 0.0% 16.9%

Table 1: Performance of planners for different world sizes.

Planner execution times
Planner and | Mean execution | Median execution
world size time (ms) time (ms)
A* 375 3092 4979
A* 500 5383 8789
'L.DQN375 |98 112 ]
L. DQN 500 125 127
| MuMB 375 |48 46 ]
MuMB 500 69 67

Table 2: How long the planner took to generate a plan for different world sizes.
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Figure 10: Box plots representing distance between the start and goal location
versus the execution time in milliseconds for the whole planner execution time.

4.2 Strategies

As can be seen in Figure 11, the A* planner is strictly focused on getting to
the goal, and will always behave optimally in relation to this objective. This
leads to sharp angles and going along the edges of mountains, no-fly zones, and
air defense system spheres. This planner’s ability to attack is rarely used since
there most often is another peaceful solution with a lower cost. One drawback
with going so close to the mountains is also that it depends on the autopilot
is able to follow the path exactly for long periods of time, which is something
that it often has trouble with. This leads to a significantly lower performance
for the pilot reward (Figure 9) due to crashing. Furthermore, the sharp angles
of the plan do not follow a realistic flight trajectory, which might also be a
contributing factor to this.

Figure 12 shows how the Local DQN planner is opportunistic. The planner
rarely find a way all the way to the goal, but will often be able to move towards
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Figure 11: A* planner example. Tends to "hug” the edges of obstacles in order
to minimize the distance to the goal.

it, taking into some account the obstacles in the way. That said, it is not rare for
it to move through mountains, which sometimes enables to keep planning when
not having a clear path forward. Running into dead-ends occurs frequently,
which is either handled by the algorithm backtracking, or by planning in circles.
The planned path is always smooth.

Figure 12: Local DQN planner example. The planner will often not go straight
towards goal, although it often travels in the right general direction. It some-
times ignores obstacles. In left upper corner two loops are planned.

The MuMB planner (Figure 13) tends to disregard obstacles about as much
as the Local DQN. However, unlike the DQN it tends to travels in somewhat
straight lines. This behavior can also be seen by looking at Figure 14, which
visualizes how the memory buffer changes for every iteration. This shows a color
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shift centered around the goal, but also large swaths of uniform color, which is
what results in the straight lines when interpreted as a flowfield. This more
or less guarantees that the last waypoint of the plan will end up at the goal
location. One can also observe distortions in the image, corresponding to the
terrain below, which causes some reaction to obstacles.

Figure 13: MuMB planner example. Will often travel in straight lines and
exhibit sharp turns. It often ignores obstacles, but for some areas (left side),

terrain is considered.

Figure 14: MuMB planner refining memory buffer iteratively. Red color chan-
nel represents = (east-west) component and green channel represents z (north-
south) component of vector in plan extraction. Progressing left to right and top

to bottom. Notice the oscillating behavior, and how every state is more refined
than the second next.

28



5 Discussion

5.1 Planning performance

All planners sometimes fail at finding a valid path, and there is an overall wide
spread in the success rate. The best planner is MuMB both in terms of average
static reward, pilot reward (Table 1), and execution time (Table 2). The A*
planner fails to generate plans a large majority of the time, and when it does
it scores decently on the static reward, but poorly with the pilot reward. The
Local DQN seems to perform more poorly than MuMB and A*, but is overall
more reliable than A* when invalid plans are considered. As expected, both RL
planners also do better at plan followability (Figure 9).

It should however be noted that reward may not necessarily correspond to
what humans would deem as the best plans. It is also important to note that the
specific terrain settings may have a significant effect on the planners’ ability to
find paths. For example, the A* planner might fail often because it is logically
impossible for it to find a valid path through the terrain at the set flight altitude.
As is suggested by Figure 10 a) and b), A* may find a solution relatively quickly
(although slower than the other planners) if one exists, but will stall and fail
due to reaching the maximum iteration limit otherwise.

The planners all become slower when the world size increases. Although two
sizes of worlds aren’t enough to empirically confirm it, it can be expected that
this value will at least increase linearly by the area of the world for all planners.
However, as seen in Table 2, the relative increase in execution time with A* is
more significant than for the others. A comparison can be made to how human
working memory can be overloaded during planning for problems that require
a high level of top-down computation. A* has a lot to keep in memory but is
only able to explore one node at a time. It is also worse off than humans, and
other neural networks, due to not having any ability to generalize in order to
scale down the search space. It is also unable to act on heuristics. The Local
DQN has the opposite problem. Due to its model structure, it can process the
whole surrounding concurrently, but it cannot retain any information over time.
This means that is has to understand as much as it can in the current moment,
and then choose an action that is probable to lead it towards the goal. This
makes it purely reactive to stressors such as no-fly zones, and means that it can
be fully understood from a behaviorist perspective.

Much like the sampling-based path finding algorithms discussed earlier, Lo-
cal DQN benefits from not being careful and betting on a specific path instead of
spending compute resources on careful deliberation about the best way forward.
This however comes at the risk of running into dead ends, which can significantly
lengthen the planned path. In relation to the speed-accuracy-tradeoff, this sug-
gests a planner which is heavily biased towards speed. This comes from the
nature of the algorithm. Maybe as a method of increasing accuracy by ”looking
around”, the planner will sometimes create one or two circles before continu-
ing on. This is in contrast to MuMB, which almost always moves deliberately
forward (although not always directly towards the goal) without getting stuck.
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It is notable that both the Local DQN and MuMB gladly will plan through
mountains, no-fly zones, and go close to air defense systems. This is likely a
result of the algorithms not having converged enough during training to find
a proper strategy, but it could also be seen as a form of bottom-up planning,
where some decisions are left to be made later in situ by the autopilot.

5.2 Future investigation

All the RL algorithms were found to be relatively tricky to train, and as a result,
there is a question of whether limitations in performance are a result of funda-
mental limitations of the model and overall method, or if there is left untapped
potential due to bad convergence. As can be seen in Figure 15, catastrophic
forgetting was an issue that relatively quickly arose. This was also a problem
when training the autopilot, and likely arises when the replay buffer fills with
only good policy, removing the necessary learning pressure exerted by failures.
One way to counter this is to increase the capacity of the buffer, although this
comes at the cost of RAM. Another possible solutions could be to implement a
prioritized replay buffer (Schaul et al., 2016).
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Figure 15: Local DQN training example from Tensorboard. X-axis represents
training steps and is proportional with time trained, and y-axis the current
reward (higher is better). The transparent line in the background is the original
data, and the green line is with smoothing. The model quickly reaches maximum
performance, and loss tends to be stable in the short term, but suffers from
catastrophic forgetting in long therm (step 420k).

The on-policy PPO algorithm (training in 16) suffered less from catastrophic
forgetting but was hard to make converge at all. Hyperparameter tuning and
trying different implementation details (detailed by Engstrom et al., 2020), did
help, and would likely be able to improve the convergence further. For the sake
of simplicity, it would maybe be beneficial to switch all reinforcement learners
to one algorithm. PPO is a good candidate for this because of its good con-
verge, but does with this implementation not make use of the multi-threading
capabilities.

One possible solution for all the learning algorithms could be to switch from
dense rewards to sparse. Currently, multiple reward functions are used, all of
which try to generate an estimate at every update. In some sense, this had
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Figure 16: MuMB training training example from Tensorboard. X-axis repre-
sents training steps, and y-axis the current loss. As can be seen in transparent
pink background line, the loss is very unstable, but tends to improve over time
in a stable fashion until learning stagnates (pink line).

made it easy to fall into the trap of reward shaping, where complex reward
functions are constructed to encourage a certain behavior. What often happens
in these situations, and what has arguably happened here, is that undesired
loophole behaviors develops instead. In this case, I observed planners ignoring
mountains if punishment for this was low, and going in circles to not risk crashing
into mountains if punishment was high. Sparse rewards would entail giving a
reward signal only when reaching the goal, or crashing. This makes convergence
harder to achieve, but also avoids rewarding the agent for ”cheating”.

Maybe the largest problem with the Local DQN is the inability to backtrack
when running into dead ends. A promising way forward might be to convert it
to a Value Prediction Network as done by Oh et al., 2017, and let a Monte-Carlo
tree search perform the planning. The planner could also easily be converted to
do produce output in 3D, which would make it more useful overall, and likely
also increase plan followability.

The MuMB planner filled its purpose in terms of explainability and demon-
strating that it works as a proof-of-concept. As can be seen in Figure 14, it
does however not function completely as intended. Although the memory does
refine, it oscillates between two distinct states, and there does not seem to be in-
formation spreading through the map. Although one could make the argument
that these oscillations mirror the pulsing behavior of P. polycephalum, it likely
evolves as a result of the limitations of the convolutional layers in the model.
During development, I did experiment with allowing for more intelligent behav-
ior by instead using a feed-forward network that strides across the buffer. This
would likely allow for much more complexity in behavior, but so far I have been
unable to make this kind of model converge. A suspected solution is to more
effectively measure and reward exploration for this large action space. If this
was solved, it would likely be possible to easily add 3D planning and attacking
behavior to this planner as well.
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6 Conclusion

The aim of this project was to investigate the feasibility of using RL algorithms
for doing flight route planning. While neither of the implemented RL planners
is unequivocally successful at this task, the algorithms could surpass the tradi-
tional A* planning algorithm in terms of both performance and execution time
for a specific plan quality metric. The ability of the RL planners to adapt to
an autopilot also makes them able to construct paths that are more feasible.
The theoretical advantages of behind the learning algorithms in terms of being
able to speed-accuracy-tradeoffs, choosing between top-down and bottom-up
planning, and making use of distributed computing, are to some extent corrob-
orated by the empirical results. That said, all algorithms are in their current
form far from having the performance required in order to be used as real-world
aids. While the field of flight route planning using modern methods hasn’t been
thoroughly investigated to my knowledge, much of the research done in other
domains is relevant and could be used to considerably accelerate progress within
also this field.

While it would be beneficial to further investigate other traditional algo-
rithms such as sample-based planners, it is my opinion that RL is well worth
exploring further for solving this task due to their flexibility, ability to percep-
tually generalize, and their ability to develop problem specific search strategies.
Maybe most importantly of all, they have the ability to learn what should be
planned beforehand and what can safely be decided by the pilot later. Hope-
fully, the simulation environment that was developed during this project also
proves useful as a testbed for these future investigations.
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Division of labor

e Program structure Axel
e Development environment setup Both
e Argument parsing Axel
e Textual logging Axel
e Threading Axel
e Memory leak cleanup Axel
e Perlin noise Erik
e Heightfield generation Erik
e No-fly zone generation Erik
e Territory generation Axel
e Air defense system generation Axel
e World rendering Erik
e OpenGL object management Axel
e 3D modeling & texturing Axel
e 2D Map Axel
e Aerodynamics Axel
e Tensorboard logging Erik
e Autopilot Axel
e Random planner Axel
e A* planner Erik

e DQN with motion primitives planner FErik

e MuMB planner Axel
e Data collection Axel
e Data analysis Axel
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