
 

  
2019 

Hunter gatherer simulation 

ARTIFICIAL LIFE AGENTS COMPETING IN A 2D WORLD 

AXEL WICKMAN 

729G43: ARTIFICIELL INTELLIGENS 

EXAMINATOR: ARNE JÖNSSON 



 

Abstract 

In this project an artificial life simulation was built in order to demonstrate and explore the dynamics 

that emerge from the rules of this kind of system. The simulation consists of humanoid agents 

moving in a 2D world, able to eat food to sustain themselves, and being able to reproduce asexually. 

Along with the graphical simulation, tools were added in order to be able analyze the system 

statistically. This report explains the motivation behind the project, how it was made, how it can be 

used, and lastly provides an analysis of the systems common behaviors.  



 

Introduction 

The ability to run models and algorithms on our computers provides an opportunity to 
understand some of the fundamental mechanisms of our surroundings, and why they arise. 
By building simulations, a programmer can observe behavior of systems given varying levels 
of complexity of the rules and preconditions of this system. Depending of the goal of the 
researcher, the purpose of the simulation can be to closely approximate the real world, to 
only mirror some essential process of the real world, or to model something entirely 
theoretical. In which case, the simulations can bring attention to complex interactions and 
emergent behavior that otherwise wouldn’t be obvious through purely mathematical 
modelling. This project is a free exploration of how to build a system which gives rise to this 
behavior. 
 
 

Background 

Artificial life 
Understanding human and animal behaviors is of large interest to many fields of science. 
While a lot of behavior can be understood through models of psychology and reward 
mechanisms, some of it stems from our evolutionary past. To understand this, one approach 
is to simulate the evolutionary process for virtual agents in a virtual environment. Most 
commonly this uses the principles of natural selection; discards what doesn’t work, 
elaborate on what does. The progression/evolution of this kind of system is a tendency for 
what is being elaborated on to move towards states with the properties that makes them 
stable. For virtual agents this is typically behaviors which promote survival and 
reproduction, which can be defined or incentivized by the programmer designing the 
system. What is interesting about this system isn’t only what has to be done to survive, but 
also the often complex dynamics of the behaviors that help to accomplish this. 
In the famous Conway’s Game of Life, emergence and self-organization can arise from rules 
that are very simple. From only three rules (governing survival, births and deaths) this 
system is capable of states that not only are entirely unpredictable, but also are capable of 
simulating Turing Machines (Rendell, 2001), as well as self-replicating structures (dvgrn, 
2013). Self-replication in systems is one way that competition can arise. Competition can 
give rise to certain traits being selected for by applying selective pressure to some parts of 
the system. Natural selection is an example of this, and so is competition between 
companies. Another example where competition doesn’t equal existence of a self-
replicating structure, but rather stability of the system, is a modern, today commonly used 
within machine learning type of network called General Adversarial Networks (Google, 
2019). Here the competition is between a generator and a discriminator network, which 
both try to outsmart each other, giving rise to better models. 



 
Figure 1. Day 19: Chladni Plates, by Chris Smith, 2013. 

Example of a natural selection system. Grains of salt are placed on a paper with a loud speaker below. When tone is played, 
some parts of the paper oscillates, while some are at points of equilibrium. The grains of salt, which were originally evenly 
distributed, bounce in a random direction if they are resting on an oscillating part of the paper, but otherwise stay put. The 
grains in “good” positions are kept, while the grains in “bad” positions are resampled. From this process coherent patterns 
emerge.  

Artificial life has been used as a method for inquire within for example the field of biology. Taylor 

and Jefferson (1993) provides a comprehensive summary of how artificial life in the form of 

software, hardware and in the lab can be used to understand the complexities of living systems on 

the level of the molecular, cellular, organism and population-ecosystem. The molecular level 

provides insight about the grey-area between living and non-living systems. When can a reaction 

involving an RNA-molecule be seen as fulfilling a purpose and not just an accident? This view of 

chemical evolution, which considers how simple molecules can self-replicate, is distinguished from 

organic evolution, which considers the replication of already organized, clearly defined units. This 

kind of evolution can consider life on an organism level, with single individuals consisting of these 

units having emergent behavior (functionality of control) to perform tasks using some kind of low 

level reasoning. Organic evolution can also consider life at the population level, where the clearly 

defined units instead are coexisting individuals with their own incentive to spread their own genes. 

This kind of system produces a kind of ecosystem, with emergent intelligent agent behavior arising 

from competition and symbiosis, as well as evolutional phenomena. In this project, the decision was 

made to investigate this kind of artificial life system.  

 

Purpose 
The purpose of this project is to build a system simulation that through the process of natural 

selection and competition between artificial agents create emergent behaviors. The overall nature 

of these behaviors should be investigated though mainly qualitative observations of the system, over 

quantitative observations.  

 

 

 



Method 

Environment design decisions 
To fulfill the purpose of the study the environment should be constructed in such a way that it 

allows for the competition between agents, while also delegating the decision reproduce and other 

behaviors to the agents and the evolutionary process itself. This means that the agents must live in 

the same world in order to interact – a multi agent system. This also rules out using a genetic 

algorithm that programmatically selects and reproduces agents according to certain behaviors. 

Instead, a more hands off approach was chosen, where a natural selection process emerges from the 

environment controlling the conditions of survival and reproduction. It therefore makes sense to use 

an environment which is both continuous (for both time and space) and sequential, where each 

agent has to make decisions based on non-discrete input throughout its life, where previous actions 

affects later outcomes. This means that small changes in decisions can have a large effect on later 

outcomes, and that this system is chaotic and that the environment therefore in practicality is 

stochastic (Russell & Norvig, 2009, ss. 42-44). 

 

Agent design decisions 
The agents were chosen to have only partially observable percept of their surroundings, and while 

actions are performed constantly the environment is technically static because a new percept is 

calculated, and a new decision is taken between every frame with environment not changing during 

this decision time. A classical shallow neural network is suitable for agent decision making. Among 

other reasons, this is the case because they are universal function approximates, in theory being 

capable of calculating any mathematical function (behavior) necessary for the agent’s genes to last 

(given sufficient size). Usually neural networks are trained using supervised gradient decent 

algorithms. This is however not an option here since the optimal outputs for the network aren’t 

known. The network structure and weights are therefore determined exclusively from the agent’s 

genes and are thereby controlled by the natural selection. 

The agent’s percept is configurable. The percept values always range between 0 and 1. The agent 

can have six different modalities to sense: 

• Collision – if the agent is colliding with the wall. 

• Visual receptor – lines orientated at different angles to the agent, which increases in value if 

the line intersects any object in the world. 

• Color – red, green and blue value that corresponds to the average color of what the visual 

receptors intersect with. 

• Energy level – Ration of current energy level to maximum possible energy level. 

• Mushroom count – Ration of current mushroom count to the maximum possible mushroom 

count. 

• Memory – values that change with a certain reactivity towards a value of a corresponding 

network output value. This allows for recurrence in the neural networks. 

 

Each agent can perform at most six different actions, depending the configuration and on if 

conditions allow it. Actions that constitute instantaneous events have a cooldown-period where they 

can’t be triggered again. The possible actions are: 



• Reproduce – “willing” if activation above a threshold. Needs at least 60 in energy in order to 

be able to do this. Energy between the parent and child are split according to set 

proportions. 

• Walking – at certain speed and backwards if the value is close to zero. There is an energy 

penalty in proportion to the absolute speed of the agent. 

• Turning – Left or right. Turning rate is the delta between two output perceptrons. Energy 

penalty in relation to the turning-rate. 

• Eat – consume one mushroom from the inventory to turn it into energy. Energy from eating 

is capped at set level. 

• Place – place one mushroom from the inventory in front of itself in the world. 

• Punch – Remove energy set amount of energy from all other near agents, with set energy 

penalty. 

 

Implementation 

General programming 
The software is required to simulate and render many elements, which means there is a risk of 

hitting performance bottlenecks. To mitigate this, C++17 was chosen as the main programming 

language because of it being performance orientated and providing low level control over the 

hardware, while still having many modern features to speed up the development process. Compiling 

was done with the GCC MingW compiler, and CMake for managing the build process. C++ has 

extensive support for object oriented programming. This is most commonly accomplished by 

creating one header file, where all the class declarations are stored in such a way that it is clear to 

the programmer and compiler how to use the classes in the file. Then there is a source file, which 

contains all the definitions, or actual code, for the classes that were declared in the header. One 

class can access and use another class by telling the compiler to include the other header file, which 

makes the header file’s scope accessible, and makes it possible to instantiate an object of the class 

and call the member functions inside it. This means that there usually is a hierarchical organization 

of ownership between the classes, with the “main” function at the top, acting as a starting point for 

execution of the program. 

There are times when one object must access another object which it doesn’t own. This can be done 

by the object previously having been given some kind of reference (a pointer, smart pointer, or a 

reference to the object) which has been stored, or by accessing a third object which knows about 

the desired object. This last technique is for example used when the WorldObject class needs to 

check the config file, which can be globally updated during runtime. Every WorldObject-object has a 

pointer (a variable with a memory address as a value) to the World-object which spawned them, 

which they can as for the Config-object using a getter function, which is returned and read. Another 

case is when an object is managed by a shared pointer (a kind of smart pointer). In this case it 

practically is owned by all objects which knows about it and is deleted when it is no longer 

referenced by anything else. This is for example used when an agent dies but has been selected by 

the user and therefore still referenced by the GUI-object. In this case it isn’t deleted from memory 

until the user deselect the agent. 



 

Rendering 
The output of the program consists of the prints produced in the terminal, as well as a window with 

a real time, interactive rendering of the world and statistics about it. To create one of these windows 

require interaction with the operating system, and a lot of low level programming for graphics and 

input. This is therefore handled by the library SFML, which has several advantages. It provides a high 

level interface for creating windows, graphics, audio and networking. It also provides interoperability 

between operating systems, which means the same code can talk to Windows, Mac and Linux. On 

top of this, SFML provides utility classes and functions, which speeds up development and decreases 

complexity of the code. One commonly used example of these is the sf::Vector2<T> class, where the 

“T” can be different numerical types such as floats and integers. This class is convenient for storing 

two numerical values in one variable and provides rudimentary but very useful vector algebra 

member functions. 

Rendering isn’t accomplished through one specific class in the project. Instead, all objects which can 

be rendered have a draw member function, which is called every frame with a pointer to the SFML 

window object and a float of the passed time as parameters. While rendering is executed 

sequentially with the rest of the program, which for simplicities sake is single threaded, there 

happen at the same time as OpenCL is processing agent decisions. This means that there on most 

systems is a double load on the GPU, but this likely isn’t a problem because this isn’t a processing 

bottleneck.  

 

Quadtree 
Because the system needs to calculate collisions between objects in the world, and there will be 

hundreds of objects which can collide every frame, a smarter solution is needed than simply 

calculating the Euclidian distance between every object constantly. This solution is not viable 

because it has a time complexity of 𝑂(𝑛2 − 𝑛), and quickly becomes too slow for even a modern 

computer running C++. Instead, a Quadtree is used to only calculated the exact distance between 

object which are already known to be close to each other in memory. This tree is a kind of container 

with shared-pointer references to all world objects which can collide world objects. These world 

objects have themselves references to the Quadtree and can perform lookups in to get a container 

of all other close objects. The tree structure is recursive, with the top tree rectangle encapsulating 

the whole map. If two objects are in the same rectangle, that rectangle is then split into four 

quadrants, and the reference to each object is moved down to their respective subtree. This process 

continues until every object has its own rectangle, or the subtree size limit is reached.  Every time an 

object moves outside the current subtree its reference is moved up the tree until its position is once 

again within the current tree’s rectangle, where it is then inserted.  

 

Genes 
Every agent has genes which defines their characteristics. The implemented system for managing 

these genes is very general (which provide flexibility), and does not differentiate much between 

genotype (the genetic structure) and phenotype (the resulting characteristics). This has the 

disadvantage of not allowing for modularity and regularity (Huizinga, Mouret, & Clune, 2014) arising 

from genetic structure but has the advantage of not adding extra complexity and uncertainty in the 

simulation. The gene representing the number of layers in the network is for example simply 



represented as an integer number. There are five different types of gene-classes all inheriting from 

the same abstract base class Gene. The numeric types FloatGene, and IntegerGene stores one value 

of their respective datatype which can vary between a given range. The LambdaGene is a so called 

template class, meaning that it can store any kind of value, which is then evaluated using a user-

defined lamda-function. The map genes are containers which have strings as keys and any kind of 

Gene as value. These are used to give names and easily look up values in the genome. The last kind 

are ListGenes, which clone a given template Gene either a static number of times, or the number of 

times defined by an IntegerGene. 

Using these types of classes it is possible to recursively define the structure of a genome, which 

values then can be easily generated and mutated randomly as well as cloned. The significant 

advantage with this is that the system automatically adapts the number of generated random 

numbers. This can be seen in the code snippet in Appendix B, which shows how the system is used. 

The system will generate a new completely random layer, the layer count increases with one. After 

generation the values can be accessed through a function where needed to then actually translate 

the genes into characteristics. 

 

Agents AIs 
The agent AI consists of a traditional feed-forward neural network (also called a multi-layer 

perceptron) which is ran every frame. This is a large computational workload, but the running of 

these neural networks do not depend on each other in between frames. This means that it is 

possible to perform this task using the GPU, which is designed for running computations on its 

thousands of cores. If a given problem is suitable, which it is in this case, it is possible to get multiple 

times the performance. It is however required to write special code to program the GPU. The choice 

was made to use OpenCL for, mainly because it is a low level language with little performance 

overhead, and because it is a standard that automatically works on mainstream GPUs and also CPUs 

(which works as a fallback in case there is no GPU).  

To implement this, an OpenCL-wrapper object is told every time a new agent spawns. This new 

agents genes is then translated into memory buffer representations of the neural network, and this 

data is written to the GPU. These buffers are then manually allocated when the Agent-object is 

destroyed (because the agent died, the program shut down, etc.). Every frame, after world physics 

simulation but before rendering, a loop loops through every agent, first updating its percept, then 

asking the OpenCL-wrapper to think for it. This writes the percept data onto a buffer specific to the 

current agent, called netActivationA. The GPU is then instructed to start a kernel, which is the 

function that runs on the GPU, which computes the neural network activations of the next layer 

given the network and the previous layer. As a parameter, the kernel is given netActivationB as the 

buffer to write the output activations to. This is simply an instruction for the GPU to start the kernel, 

and doesn’t happen immediately, and the main program doesn’t wait for it to finish. Instead it goes 

to the next layer and queues an instruction to compute this layer when last layer is done, but this 

time with netActivationB as input buffer and netActivationA as output buffer. This procedure is 

repeated, with the buffers flip-flopping, until the last layer is reach. The last instructions for this 

agent is to first to get the last activations buffer’s data from the GPU, and then call a callback to the 

Agent object, setting its computed actions. This is then repeated for all agents, every frame. At the 

start of every frame, the main program freezes and waits for all GPU computations to finish up, after 

which it can apply the actions. 



As activations the network is fed values ranging between 0 and 1 from the percept. The first hidden 

layer perceptrons then first multiplies previous layer activations with the connection weights, and 

sums them. The previous layer’s bias is then added, and the value is passed through the arctangent 

activation function to provide this layer’s activations. This is then repeated for all hidden layers and 

the output layer. The output layer activations are then passed through the sigmoid function (on the 

CPU) to get a value between 0 and 1 to be used as an agent action. The default network values can 

be found in the configuration file (Appendix C).  

 

Agent colors and names 
Agent colors was added as a tool to track which agents are related and how much their genome is 

changing, every agent is given a color and a name generated from their genome. The agents’ colors 

also allow agents to see the species species of other agents if color vision is activated. Because the 

names and the colors need to reflect differences in the whole genome, they aren’t generated from 

specific genes, but rather the value of all numeric genes are normalized and collected into a vector. 

This vector is then split into several parts (depending on how many values are needed) and an 

average number is calculated for each part. These averages are then used as inputs for generating 

the colors and names. The color comes from rescaling three extracted values linearly and simply 

making these the red, green and blue components. 

For constructing the names, a Markov chain is used. This Markov chain is built from a database of 

100 000 American surnames and saved to a json file using a Python script. This json file is loaded into 

memory when the program starts. The model has a max lookup of 4, meaning that it will look at the 

previous 4 characters (at most) both when generating the chain and choosing the next character. 

When generating the characters, all previous instances where the same lookup characters have 

appeared are considered as alternatives. To make the decision the numbers extracted from the 

genome are used. This system means that children most likely will have similar colors and names to 

their parents, but that unrelated agents will have vastly different characteristics, and also that small 

changes in the genome have a small and for names probabilistic effect. 

 

Populating the world 
Agents and mushrooms have a chance of being spawned in the world every frame if their current 

count doesn’t exceed their respective predefined limit. This is done by interpreting these events as 

random and independent, and using a poisson distribution and a given rate multiplied by the frame 

time to generate a random number which represents how many of this object should spawn this 

frame. This creates a forever lasting supply of food resources for the agents, while still allowing for 

food running out in the short term. Mushrooms can reproduce if their total count is less than the 

limit and there aren’t too many mushrooms in the local vicinity. Every frame every mushrooms as a 

certain probability of spawning a new mushroom somewhere near itself. 

Agents can also reproduce at will, when certain conditions are met. This isn’t dependent on the 

current count of agents. This means that the agent count can exceed the limit, although population 

explosions aren’t problem because of the limited resources in the world at any given time. Any 

sudden rise in population count will lead to there being less food to eat, and the agents starving, 

thus balancing the system. 

 



Analysis tools 
In order to get a grasp of the complex state of the simulation, as well as changes during the 

simulation, a number of tools was added into the graphical user interface. In the lower left corner, 

the current number of frames per second, time factor, agent count, and mushroom count are listed.  

This gives a very basic overview of the whole world. A more in-depth population screen can be 

acquired by selecting a specific agent. This will show the agents name in the agents color (clicking 

the name will make the camera follow the agent), an energy bar, a representation of the percept 

vector, a representation of the action vector, and text information about network layers, perceptron 

count, age, generation, children, murders, and mushrooms in inventory. Each perceptron in the 

percept and action vectors can be clicked, which changes the values of the other vector to represent 

their on-line correlation with the selected perceptron. 

On the right there is a list of toggleable settings that has some effect on the simulation or the GUI. 

The “agentSpawning” toggle turns on and off the process of agents being populated into the world. 

The “reloadConfig” toggle switches off directly after being triggered, effectively making it a button, 

which updates the world configuration depending on the config-file. The toggles 

“showWorldObjectBounds”, “showQuadtree”, and “showQuadtreeEntities” are all used to debug 

and make sure the object collision detection is working correctly. “showVision” shows the agents 

visual receptors and is also helpful for determining agent direction. “showPaths“ renders the walked 

paths of all agents, which is also done regardless if the agent is selected. The path is a dashed line 

where every dash represents 1 simulation second graphLine” and “graphSpectrogram” are mutually 

exclusive toggles, which both have sub-toggles (revealed when hovering), the latter of which’s are 

also mutually exclusive. These are described in more detail further down. “renderOnlyAgents” 

prevents rendering of the world. All toggles starting with “visualize” are mutually exclusive, and sets 

the agents opacity proportional to their corresponding attributes, effectively only showing agents 

where these values are high. “showSquare” renders a coloured square which also can changes 

opacity and makes all agent more visible. 

The line graph (toggle “graphLine”) renders color-coded normalized line graphs for each of the 

activated sub-toggles. The x-axis is time and the y-axis is the attributes value. Note that there is 

currently no smoothing or simplification of the curve, which can cause the program to run slow and 

change the agent behaviour, if not viewed while the program is paused.  

The spectrogram renders the distribution of the values (y-axis) of certain attributes over time (x-

axis), where the agents’ colours are used to indicate which agents are where in the distribution. 

Where there is overlap, the average colour is instead shown. This tool give much insight into the 

evolution of the system, and is useful for identifying what are the dominant species, how they have 

changed over time, how long  a certain species have existed, and the genetic diversity within species. 

Unlike the line graph, the spectrogram is robust to be viewed while running the simulation, even 

after recording data for a long time.  

 

Usage 

Building on Windows 
For Windows x64 machines, a prebuilt binary can be downloaded from the in Appendix A, where one 

also can find the source code. To build HunterGatherers from scratch the first step is to download or 

clone the source code onto the local machine. Also required is the SFML library (version 2.5.1 or 

above), and an OpenCL SDK specific to the hardware of the machine. During installation of these, it is 



important for the relevant environment variables are added to the system (for SFML the SFML_DIR 

needs to be set). To compile the GCC MinGW (SEH) 64-bit compiler (version 6.1.0 or above) is 

needed to be installed and added to the system path. In order to simplify the process of building, 

CMake (version 3.12 or above) is highly recommended.  

 

With all the required dependencies installed, building can be done by running the following 

commands, with “PATH_TO_MINGW” changed to the directory where the compiler was installed: 

mkdir build 

 

cd build 
 

cmake -D CMAKE_C_COMPILER="PATH_TO_MINGW/bin/gcc.exe" 

-D CMAKE_CXX_COMPILER="PATH_TO_MINGW/bin/g++.exe" 

-D CMAKE_MAKE_PROGRAM=" PATH_TO_MINGW/bin/mingw32-make.exe” 

.. -G "MinGW Makefiles" 

 

mingw32-make.exe  

In order to run the program the SFML .dll-files “sfml-graphics-d-2.dll”, “sfml-system-d-2.dll”, and 

“sfml-window-d-2.dll” needs to be placed in the same folder as the generated executable. 

 

Running 
Simply running HunterGatherers.exe will start the simulation with the first found OpenCL-device, 

although all available devices will be printed in the console. To use a specific device one can use the 

argument “CL_DEVICE” followed by the name of the device.  

The settings of the simulation are defined by a configuration JSON-file. By default, the program will 

use the “Config.json” in the same directory, but this can be changed using the argument “CONFIG” 

followed by the name of the file. These configuration settings can be changed without having to 

rebuild or even restart the simulation.  

 

Observations 

Initial development 
The following observations are a description of a typical way the system evolves, in this section is 

made using the default configuration file. Using these spawn rates, when first starting the 

simulation, the world is empty but quickly get populated by agents, and them more slowly, 

mushrooms. In the beginning there aren’t enough density of mushrooms to sustain a single agent, so 

they are all doomed to die. Because mushrooms can self-replicated, their population count increases 

exponentially, and soon the whole world is populated with hundreds of mushrooms in clusters. The 

generation zero agents often move in random turning patterns at stable but different speeds (see 

Figure 2). It is common for agents to not turn when they hit the wall, and therefore destroying their 

chances of finding food. 



  

Figure 2 newly created world. Mushrooms are clustered. Agent population is low, hand with high genetic variation. The 
behaviours are equally varied, with some agents only going in circles and others turning at seemingly random points. Note 
that the background texture at this point of the development doesn’t influence the simulation, and therefore can be 
disregarded completely. 

After a short while one or multiple agents in the world walk into a cluster of mushrooms and choose 

to quickly reproduce, creating children which do the same (Figure 3). This often creates a cascade of 

new agents and is the beginning of a new species. Because these agents are so close to each other, it 

is essential that they quickly spread out as to not compete, which is detrimental to the survival of 

the genome. 



 

Figure 3 One blue agent finds a group of mushrooms and uses the energy to reproduce. This creates children that behaves 
the same, causing a cascade. Here this happens within a very short time span. 

Species and completion 
From here, if the species is skilled enough, it often doesn’t take a long time for the species to 

dominate the whole world.  As seen in the spectrograms in Figure 4 it is not uncommon for new 

species to die out naturally. In Figure 5 this instead seems to happen because of competition from 

new species. This likely means that there is some kind of weakness in the behaviour of the previous 

species, that gets eliminated by the process of natural selection not by selecting for genetic 

variations within the species but rather by selecting a whole new species. The news species can get a 

competitive edge over its opponents, as long as there is there is one. This means that these 

sequential species aren’t independent from each other. The fact that the system doesn’t seem to be 

stable with multiple species existing at the same time indicates there only exists one evolutionary 

niche in the environment. 

 

Figure 4 Depending on the nature of the environment, it can be hard for new species to sustain themselves. With this 
configuration the new species quickly die out naturally. This image also illustrates how multiple species can exist at the 
same time.  



 

Figure 5 An environment where the 6th species to spawn is the first that’s able to sustain itself over time. Looking closely one 
can see that most new species establish themselves despite there already existing a dominant species in the world. Also 
notices the lack of new species being created when the stable species has established itself. 

In Figure 6 one can see that there can be branching of species, and that these species compete for 

resources, causing one branch to prevail. This branching doesn’t necessarily come from different 

traits competing at being successful at reproduction. Sometimes single agents being extremely 

skilled at surviving but not at reproduction, can reserve resources from the species as a whole. One 

speculation is that this “stalling” might be one of the reasons species die out naturally.  

 

Figure 6 Branching of species, and genetic drift indicated by color gradient. 

It is in fact relatively common for species to die out, despite the environment staying constant. It 

isn’t always clear why these extinctions happen (Figure 7), but it likely always has to do with the 

amount of resources in the system. The fact that the world is relatively small and generally only 

contains up to a hundred agents makes random chance likely to play a role. Another likely 

contributor is that the amount of mushrooms available varies in waves. Individuals that are quick at 

scanning for food and reproducing but bad at surviving periods of scarcity, might for example quickly 

spread over the whole world and consume all available food, which causes the decline on the whole 

species. 

 

Figure 7 Population count collapses, and then recovers. 

 

Emergent strategies 

Foraging 
The most basic skill needed for surviving in this world is the ability to find food. This skill can arise 

from the simple behavior of increasing the rate of turning if something red is detected within the 

visual feed. It is in other words very easy for a new species to be evolved simply doing this, and 

sometimes whole species can sustain themselves by for example only making left-turns. Most 

sustainable species are however capable of turning both left and right. There is however a quality to 



this skill, and not all visual receptors are always wired up to cause turning. The longer a species has 

existed for, the better they get at turning towards the mushroom and the more sensitive they 

become at detecting mushrooms even at the edge of their visual field.  

When letting a species evolve for a long time the agents also learn to change their walking speed 

depending on if they see mushrooms. The standard walking rate seems to be moderately high for 

these agents, increasing slightly if the food is right in front of them. They can however also stop 

completely, allowing themselves to have time to turn towards the food before walking towards it. 

This ability can be very effective for picking up almost all mushrooms that the agent stumbles upon, 

but also often backfires. For example, this makes the agent’s children sensitive to genetic mutations 

causing them to stop if they have food in front of them. It can also cause the agents to get confused, 

as seen in Figure 8, where the agent seeing multiple mushrooms causes it to get paralyzed and 

starve to death. 

 

Figure 8 Highly evolved agent getting confused and paralyzed by seeing too many mushrooms. 

Reproduction 
As described earlier, many generation zero agents reproduce as much as possible as soon as they 

have the opportunity. This is good for quickly establishing a new species (see Figure 9), but also 

creates a lot of local competition and is in general a dangerous thing for the agent to do in terms of 

it’s own survival. Because of the mutation rate, and because there is no kind of age limitation on the 

agents, the most valuable life to an agent is its own. A child might greatly increase the probability of 

a set of genes to survive, but there is no guarantee that the child will survive, or that it won’t even 

decrease the chances of survival for the parent through competition or through murder. 

For this reason, highly evolved species tend to reproduce much more conservatively and only when 

the right conditions are meet. A common strategy is for example to only reproduce when the agent 

has mushrooms in front of it, quickly grabbing them right after having reproduced and thereby 

ensuring it’s own survival above all. 

 



Figure 9 A spectrogram showing how many children different species and individuals tend to have. One can see how a 
species often become dominant as a result of a single individual having many children. Otherwise birth rates between 
species seem to be similar.  

Saving for later 
When designing the system, it was expected that the ability to save mushrooms in order to eat them 

later would be well used. It seemed it would be easy to evolve, with it simply being a matter of not 

eating, and indeed many examples of individuals were found doing just this effectively as part of an 

evolved strategy. This strategy usually just consists of eating when the energy level passes below 

some threshold. However, no matter the scarcity of food or energy consumption rates were 

changed, this strategy never became the part of any stable species. As can be seen in Figure 10, this 

ability does become common during certain times of evolution, but is then selected against, and the 

behavior dies out. 

As with many other behaviors there is a risk to having this ability. It’s safer to always eat as a 

heuristic, instead of making an active judgement which has the risk of being wrong and leading to 

starvation. This does however seem to be a problem that can be overcome and shouldn’t be enough 

for the ability to be selected against. below it is obvious how the population seems to be inversely 

correlated to this behavior. This is because when the food is stored instead of eaten, it limits the 

systems capacity to sustain life. Saving the mushrooms might however not be advantageous to the 

gene. Even if an agent has a buffer of mushrooms, it still risks dying, and in this case it would be 

better for the genes to reproduce.  

 

Figure 10 Graph showing the population of agents (purple) and the mean amount of mushrooms in the agent’s inventory 
(yellow). 

Opportunistic murder 
Murder rate seems to stay constant during evolution. Some species are more murderous than 

others, but no species depend solely on murdering other agents to survive as can be seen in (Figure 

11). What does seem to change during time is however how murders are done. At first, they’re often 

random and detrimental acts, often between parent and child. This can make reproduction 

dangerous. With time, it does however seem to become more of a rare occurrence which is common 

to some members of a species, and rarer to others. It seems to be an opportunistic act, that is 

something the agent sometimes chooses to do when the able. For example it might be when 

colliding into another agent, although some intelligence is required in order to discriminate between 

if it is the wall or an agent. 



 

Figure 11 A highly developed and successful agent. It's network is relatively small, and it is good at reproducing and 
surviving. It has the ability of saving mushrooms for later as well as murdering other agents. 

 

Conclusion 

The observations and analyses presented in this report are merely a starting point for the 

exploration of the model. This has been a discussion of the overarching phenomenon that tend to 

appear when running it, but the deeper and longer one looks, the more details in behavior one can 

find. To aid in the analysis of these behavior a sweet of tools are supplied to the user, and the open 

source nature of the software allows for further development and modifications to the system. The 

graphical metaphors of humans (hunter gatherers) and mushrooms makes the model intuitive to 

understand. The implementation of the model is done in a cross-platform-friendly way, and makes 

efficient use of the available resources of the system. 

Future avenues for development/experimentation for HunterGatherers could be ways of creating 

more niches, allowing for multiple species at the same time, learning during the life time, allowing 

the agents to have other items in their inventory, and aging. 
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Appendix A 

Source: 

https://github.com/Axelwickm/HunterGatherers 

Prebuilt Windows x64 binary: 

https://github.com/Axelwickm/HunterGatherers/releases/tag/v1.0 

https://github.com/Axelwickm/HunterGatherers
https://github.com/Axelwickm/HunterGatherers/releases/tag/v1.0


Appendix B 

void Agent::constructGenome(size_t inputCount, size_t outputCount) { 
 

    // Function for finding out how many weights every peceptron should have 
    auto previousLayerPerceptronCountLambda = [](LambdaGene<int> &l, float mutationFactor) { 
        auto layers = l.getOwner<MapGenes>()->getOwner<ListGenes>()->getOwner<MapGenes>() 
                      ->getOwner<ListGenes>(); 
        auto thisLayer = l.getOwner<MapGenes>()->getOwner<ListGenes>()->getOwner<MapGenes>(); 
 

        // Find which layer is calling this function 
        auto itr = layers->getList().begin(); 
        for (auto &_ : layers->getList()) { 
            if (itr->get() == thisLayer){ 
                break; 
            } 
            itr++; 
        } 
 

        // If this is the first layer, the count depends on how many inputs the network has 
        if (itr == layers->getList().begin()){ 
            auto count = layers->getOwner<MapGenes>()->getGene<IntegerGene>("InputCount"); 
            count->evaluate(mutationFactor, l.getEvaluationCount()); 
            return count->getValue(); 
        } 
 

        // Else, the count depends on the perceptron count in the previous layer 
        itr--; 
        auto lastLayer = ((MapGenes*) itr->get()); 
        auto count = lastLayer->getGene<LambdaGene<int> >("PerceptronCount"); 
        count->evaluate(mutationFactor, l.getEvaluationCount()); 
        return count->getValue(); 
 

    }; 
 

    // Function for finding how many perceptrons this layer should be 
    auto perceptronCountLambda = [](LambdaGene<int> &l, float mutationFactor) { 
        auto layers = l.getOwner<MapGenes>()->getOwner<ListGenes>(); 
        auto thisLayer = l.getOwner<MapGenes>(); 
 

        // Find which layer is calling this function 
        auto itr = layers->getList().begin(); 
        for (auto &_ : layers->getList()) { 
            if (itr->get() == thisLayer){ 
                break; 
            } 
            itr++; 
        } 
 

 



 

        // If this is the last layer, then the count depends on how many outputs the 
        // network has 
        if (++itr == layers->getList().end()){ 
            auto count = layers->getOwner<MapGenes>()->getGene<IntegerGene>("OutputCount"); 
            count->evaluate(mutationFactor, l.getEvaluationCount()); 
            return count->getValue(); 
        } 
 

        // Else, the count depends on the MutatingPerceptronCount gene,  
        // and is therefore random 
        auto count = l.getOwner<MapGenes>()->getGene<IntegerGene>("MutatingPerceptronCount"); 
        count->evaluate(mutationFactor, l.getEvaluationCount()); 
        return count->getValue(); 
    }; 
 

     
 

 

// Create a perceptron map which has a weight count, and a list of the weights. 
    auto perceptron = std::make_shared<MapGenes>(); 
    auto weightCount = std::make_shared<LambdaGene<int> >(previousLayerPerceptronCountLambda); 
    perceptron->addGenes("WeightCount", weightCount); 
    auto weight = std::make_shared<FloatGene>(settings.weightMin, settings.weightMax); 
    auto weights = std::make_shared<ListGenes>(weight, "WeightCount"); 
    perceptron->addGenes("Weights", weights); 
 

    // Create a layer map which has: 
    auto layer = std::make_shared<MapGenes>(); 
    // a random mutating integer gene which might be used to define count of perceptrons, 
    auto mutatingPerceptronCount = 

std::make_shared<IntegerGene>(settings.perceptronPerLayerMin, settings.perceptronPerLayerMax); 
    layer->addGenes("MutatingPerceptronCount", mutatingPerceptronCount); 
    // a lambda gene which decides if the mutatingPerceptronCount should be used, 
    auto perceptronCount = std::make_shared<LambdaGene<int> >(perceptronCountLambda); 
    layer->addGenes("PerceptronCount", perceptronCount); 
    // the bias for this layer, 
    auto bias = std::make_shared<FloatGene>(settings.biasMin, settings.biasMax); 
    layer->addGenes("Bias", bias); 
    // a list of perceptron maps 
    auto perceptrons = std::make_shared<ListGenes>(perceptron, "PerceptronCount"); 
    layer->addGenes("Perceptrons", perceptrons); 
 

    // The top gene is a map gene containing a layer count, predefined input and output 

counts, 
    // and a list of layer maps 
    genes = std::make_shared<MapGenes>(); 
    auto layerCount = std::make_shared<IntegerGene>(settings.layersMin, settings.layersMax); 
    genes->addGenes("LayerCount", layerCount); 
    auto inputCountG = std::make_shared<IntegerGene>(inputCount, inputCount); 
    genes->addGenes("InputCount", inputCountG); 
    auto outputCountG = std::make_shared<IntegerGene>(outputCount, outputCount); 
    genes->addGenes("OutputCount", outputCountG); 
    auto layers = std::make_shared<ListGenes>(layer, "LayerCount"); 
    genes->addGenes("Layers", layers); 
 

    // The genome is then generated according to this structure 
    genes->generate(); 
} 
 

 

 

 



Appendix C 
{ 
  "_seed" : "seed is either an unsigned int, or TIME", 
  "seed" : "TIME", 
 

  "WorldSettings" : { 
    "worldWidth" : 7500, "worldHeight" :  7500, 
 

    "mushroomReproductionRate" : 0.02, 
    "mushroomReproductionDistance" : 120, 
    "mushroomReproductionNearLimit" : 3, 
 

    "terrainSquare" : 30, 
    "quadtreeLimit" : 60, 
    "PopulatorEntries" : [ 
      { 
        "type" : "Agent", 
        "targetCount" : 100, 
        "rate" : 0.25 
      },{ 
        "type" : "Mushroom", 
        "targetCount" : 750, 
        "rate" : 0.14 
      },{ 
        "type" : "BouncingBall", 
        "targetCount" : 0, 
        "rate" : 0.75 
      } 
    ] 
  }, 
 

  "AgentSettings" : { 
    "mass": 1, 
    "friction" : 0.01, 
    "maxSpeed" : 1000, 
    "turnFactor" : 65, 
    "punchTime" : 1, 
    "actionCooldown" : 2, 
 

    "energyToParent" : 0.45, 
    "energyToChild" : 0.3, 
    "energyLossRate" : 0.2, 
    "movementEnergyLoss" : 0.015, 
    "turnRateEnergyLoss" : 0.00375, 
    "punchEnergy": 6, 
    "punchDamage" : 30, 
    "mushroomEnergy" : 20, 
    "maxEnergy" : 100, 
    "maxMushroomCount": 20, 
 

    "canReproduce" : true, 
    "canWalk" : true, 
    "canTurn" : true, 
    "canEat" : true, 
    "canPlace" : true, 
    "canPunch" : true, 
 

    "memory" : 4, 
    "memoryReactivity" : 0.18, 
 

    "perceiveCollision" : true, 
    "receptorCount" : 7, 
    "perceiveColor" : true, 
    "perceiveEnergyLevel" : true, 
    "perceiveMushroomCount" : true, 
 

    "FOV" : 120, 
    "visibilityDistance" : 350, 
    "visualReactivity" : 1,  



 

    "mutation" : 0.03, 
    "layerMin" : 4, "layerMax" : 6, 
    "biasMin" : -1, "biasMax" : 1, 
    "weightMin" : -2, "weightMax" : 2, 
    "perceptronPerLayerMin": 6, 
    "perceptronPerLayerMax": 10 
  }, 
 

  "Controls" : { 
    "pause" : "Space", 
    "close" : "Escape", 
    "showInterface" : "D", 
    "clearStats" : "C", 
 

    "up" : "Up", 
    "down" : "Down", 
    "left" : "Left", 
    "right" : "Right", 
 

    "slowDown" : "Comma", 
    "speedUp" : "Period", 
 

    "keyboardCameraMove" : 15, 
    "timeFactorInitial" : 9, 
    "timeFactorDelta" : 0.05, 
    "timeFactorMax" :  20, 
    "scrollFactor" :  0.05 
  }, 
 

  "Rendering": { 
    "windowWidth" : 1920, 
    "windowHeight" : 1080, 
 

    "graphLine" : false, 
        "graphPopulation" : true, 
        "graphMeanGeneration" : false, 
        "graphMeanPerceptrons" : false, 
        "graphMeanAge" : false, 
        "graphMeanChildren" : false, 
        "graphMeanMurders" : false, 
        "graphMeanEnergy" : false, 
        "graphMeanMushrooms" : false, 
        "graphMeanSpeed" : false, 
 

    "graphSpectrogram" : true, 
        "graphGeneration" : true, 
        "graphPerceptrons" : false, 
        "graphAge" : false, 
        "graphChildren" : false, 
        "graphMurders" : false, 
        "graphEnergy" : false, 
        "graphMushrooms" : false, 
        "graphSpeed" : false, 
 

    "bins" : 50, 
    "showInterface" : true, 
    "showWorldObjectBounds" : false, 
    "showQuadtree" :  false, 
    "showQuadtreeEntities" : false, 
    "showVision" : true 
  } 
} 
 

 


