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Abstract

The power of machine learning systems is becoming increasingly clear, as recent
advancements in the field has shown. However one problem seems to endure: the slow
learning rate of these systems, which is greatly surpassed by that of humans. One proposed
solution to this problem is to give the systems general prior knowledge, which can then be
used to make assumptions about the dynamics of new environments, which in turn can then
be used to solve new problems at an accelerated rate. To do this, a system which can find and
model the correlation between external inputs, is proposed. Here a digital simulation of
human nerve cells has been constructed in order to model and exploit the fundamental
learning mechanics of the brain. Results show that the model behaves like real test show on a
cellular level, and that in a bigger network a correlation is indeed found between a small
number of given inputs.
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1. Inledning

De senaste aren har flera stora framsteg gjorts inom det vetenskapliga omradet maskininlarning. Okad
datorkraft, mer investeringspengar fran foretag, samt ett storre allmant intresse gallande omradet, har
bidragit till detta. Det finns en stor entusiasm bakom majligheten att fa datorer att tainka mer som
manniskor, da det gor det mojligt att eliminera manskliga tillkortakommanden ur vissa arbetsuppgifter.
En tdnkande dator kan jobba dygnet runt, och ar ofta billigare, sékrare, och snabbare &n en tdnkande
manniska. Redan idag sa ser vi maskininlarningsalgoritmer i full anvandning. Pa internet anvéands de
for att leverera passande sokresultat och annonser, samt rekommendera filmer, produkter och latar till
anvandaren!. Detta gérs genom att algoritmen tar fram resultat med hansyn till viss information, och
sedan forandras beroende pa hur vél dessa resultat presterar. Prestationen kan matas pa olika satt
beroende pa tillampningsomrade. Om man har en musiktjanst som rekommenderar latar, sa kan
algoritmen ta hansyn till exempelvis anvandarens lyssningsmonster, alder, tid pa dagen och nuvarande
vader. Dessa variabler ger sedan ett antal latforslag, via algoritmen. Prestationen kan matas genom,
exempelvis, hur lange anvandaren valde att lyssna pa de rekommenderade latarna. | detta fall skulle
algoritmen utvecklas mot att rekommendera latar som anvandare lyssnar lange pa.

Nagra andra anvandningsomraden for maskininlarning &r diagnostisering av sjukdomar, datorseende,
taligenkanning, sprakforstaelse, robotlokomotion, kontrollsystem och Avrtificiell intelligens (Al) ibland
annat spel. Algoritmerna bakom dessa omraden varierar dock drastiskt. Artificiella neuronnatverk
(ANN) anvands i manga fall pa grund av deras férmaga att hitta komplexa samband. De bestar av
neuroner som kan kommunicera med varandra med elektriska signaler via kopplingar. Varje koppling
gar fran en neuron (den presynaptiska cellen) till en annan (den postsynaptiska cellen), och har en viss
styrka som paverkar amplituden av de signalimpulser som passerar igenom. Nar en neuron far signaler
via kopplingar sa bearbetas de och férmedlas vidare. Inlarning sker da sedan genom att variera till
exempel styrkan pa kopplingarna, eller variera hur varje neuron behandlar signalerna. Ju fler neuroner
och kopplingar ett ndtverk har vars virden inte bestdms av en ménniska, ju ”djupare” ar det. Det finns
manga typer av neurala natverk. Bland annat kan strukturen pa natverken kan variera. | den vanligaste
typen &r neuronerna organiserade i lager, och signalerna kan bara rora sig framat. Detta ar ett feed-
forward natverk, i kontrast till aterkopplande néatverk. Man kan ha olika typer av signaler i natverken.
Ofta &r det bara ett enkelt nummervarde, men det finns undantag som i faltnings-neuronnétverk
(CNN), som har visat sig vara véldigt bra pa bland annat datorseende. Dessa natverk ar inspirerade av
syncentrum i vara egna hjarnor (dven om de flesta studier gjordes pa katter), och har varit en stor
utvecklingskalla inom maskininlarningen de senaste aren.

En inspirationskalla till mitt projekt var publikationen ”Building Machines That Learn and Think Like
People™. Har diskuteras problemet om varfor vi manniskor kan lara oss att utféra uppgifter som att
spela ett spel pa bara ett antal forsok, samtidigt som det kan ta hundratals timmar for ett artificiellt
neuronnatverk att komma i narheten av var prestationsformaga. Forfattarnas uppfattning ar att det
beror pa grundlaggande skillnaderna mellan de artificiella natverk som anvands och utvecklas idag,
och hur vi manniskor fungerar. De foreslar att vi manniskor utnyttjar den kunskap om vérlden vi redan
har, och applicerar den i det nya sammanhanget. Detta later oss gora antaganden som det artificiella
natverket maste testa sig fram till. Vanligtvis nar man vill lara upp ett natverk sa borjar man namligen
med att det &r helt otranat, utan nagon erfarenhet alls. Genom att forst lata ett neuronnatverk bygga
upp intuitiva modeller om till exempel fysik och psykologi, sa ger man det en grund att basera sin
utveckling pa nar det far ett nytt problem att 16sa, menar forfattarna. Detta kallas modell-baserad

1 Adam Spector. Spotify Just Dove Deep Into Machine Learning Personalization. Liftigniter. 28 Maj 2015.
http://www.liftigniter.com/spotify-just-dove-deep-into-machine-learning-personalization/ (Hdmtat 2016-10-
30).

2 Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, Samuel J. Gershman. Building Machines That Learn
and Think Like People. CBMM. 2016. arXiv:1604.00289v2



inlarning, for att natverket bygger fram en I6sning baserat pa sin modell av problemmiljons
uppférande.

Att bygga ett sorts natverkssystem som utnyttjar dessa teorier om modellbaserad inldrning, och sedan
trana upp det, tror jag skulle vara ett stort steg mot allméant Al - dér varje trénat natverk (hjarna)
anvands till mer &n att bara l6sa enstaka problem. Ett forsta steg skulle vara att skapa ett natverk som
automatiskt bygger upp en intuitiv modell av de varden man ger det. Med intuitivt menas att det inte
finns nagon resonemangsformaga i natverket gallande de samband det har lart sig, vilket ar en foljd av
att bara grundlaggande inlarningsmekanismer kommer anvindas. Att fa natverket att styra mot att 16sa
problem efter hur vl jag som programmerare vérderar dess prestation ingar ej i detta projekt, men ar
ett méjligt framtida forskningsomrade.

1.1. Syfte och Fragestallning
Syftet med detta projekt &r att ta reda pa hur man kan bygga upp en datorsimulation av en biologisk
hjarna, som sedan kan anvéandas for maskininlarning. Fragestallningen ar hur man kan ga till vaga for
att bygga detta system, samt om en biologisk modell fungerar for att bygga upp en intern intuitiv
modell av sambanden mellan inputvarden.

1.2. Materiel och metod

1.2.1. Natverksmodell
Den manskliga hjarnan &r ett bra exempel pa den sortens system som jag vill bygga. Man kan se den
som en korrelationsmaskin. Den tar inputs i form av nervsignaler fran vara sinnen, och hittar samband
mellan dessa. Dessa samband tas fram genom relativt enkla regler som fungerar pa cellniva, och
innebdr att kopplingarna mellan neuroner, dar det finns en korrelation i avfyrningsmonstren, blir
starkare. Reglerna teoretiserades av den kanadensiska forskaren Donald Hebb 1949 i sin, inom
neuropsykologin, mycket kdnda bok “The Organization of Behaviour™. ”Hebbianska”
inlarningsmodeller &r mycket vanliga inom artificiella neuronnatverk, &ven om deras implementering
av nodvandighet varierar beroende pa natverkstyp. Den Hebbianska inlarningsmodellen paverkar bara
styrkan av kopplingarna mellan neuronerna, och kan sammanfattas: Celler som avfyras tillsammans,
sammankopplas. Om en nervcell vid upprepande tillfallen orsakar att en annan avfyras, sa starks
kopplingen mellan dem. Detta kallas Long-term Potentiation (LTP).* Motsatsen till detta kallas Long-
term Depression (LTD). Denna formaga att forandra styrkan i kopplingarna kallas synaptisk
plasticitet.

Det finns tva populdra satt att representera biologiska neuroner i natverksmodeller. Man kan till
exempel representera nervcellers avfyrningsfrekvens, en s.k. rate-modell. Denna modell &r robust for
inlarning, latt att implementera, och &r ofta biologisk representativ, men den Klarar inte av att
representera alla sorters informationséverféring. Neural kodning &r hur information kan representeras
och forflyttas i hjarnan. En rate-modell later information bara representeras i hur aktiva neuronerna ar.
Eftersom syftet med detta projekt ar att skapa en relativt verklighetstrogen biologisk modell, s ar det
nodvandigt att tillata temporal-kodning. Detta genom att istéllet representeras den elektriska
spanningspotentialen, i bade neuronerna och kopplingarna (som héadanefter hanvisas till som
synapser). Over tid kan spanningen férandras. Om spanningen Gverstiger en viss troskelpotential, sa
orsakar det en nervimpuls, som férmedlas vidare till synapser och darmed andra neuroner. Detta gor
modellen till ett impuls-baserat ndtverk (SNN). Denna temporal-kodning innebér att en enstaka neuron
kan overfora information via specifika avfyrningssekvenser, vilket i praktiken innebér att den far den
tekniska mojligheten att kommunicera med till exempel morsekod. Att anvanda ett SNN mojliggor att
aven anvanda en mer realistisk modell for den synaptiska plasticiteten. Impuls-tidsbaserad-plasticitet

3 Hebb O. Donald. The Organization of Behaviour. New York: Wiley & Sons. 1949.
4 Hebb's Three Postulates: from Brain to Soma. [online video]. 2015.
https://www.youtube.com/watch?v=SIp CTEfiR4 (Hdmtat 2016-10-30)
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(STDP) baserar forandringen i synapsens styrka pa den relativa tiden mellan nervimpulser. Denna
modell &r i full enlighet med Hebbs regler, och har visat sig representera den biologiska verkligheten
ganska val.

Som tidigare namnt sd kan neuronnatverk besta av olika sorters strukturer. | detta projekt placeras
neuronerna ut spatialt i 3D utrymme, och skapar kopplingar till alla de andra ndrmaste neuronerna.
Koordinaterna ar slumpmaéssigt genererade decimaltal, som &r jamt fordelade inom en sfér. Detta
system innebdr att hjarnan har en aterkopplande neuronstruktur. Har uppstar problemet med positiva
aterkopplingsloopar, da signaler i hjarnan kan livnara sig sjalva obegréansat lange. Detta kan ske i &ven
verkligheten under vissa genetiska forutsattningar, och &r kant som epilepsi. Ett av hjarnans satt att
motverka detta & genom att placera ut inhibitoriska synapser, som hammar aktivitet i neuroner. Denna
sorts synapser ar oftast mer lokaliserade, har kortare kopplingar an excitatoriska synapser (som framjar
aktivitet i neuroner). De r dven ovanligare, da endast 15 % av neuronerna i hjarnbalken har en
inhibitorisk roll. Deras roll i faktisk inlarning och informationsbearbetning ar omstridd inom
forskarvarlden, men det star klart att de har en viktig funktion inom att motverka epileptiska anfall.®

I och med att hjarnan inte har nagon mekanism som “motiverar” den att strava efter vissa mal, sa ar
det poanglost att bygga ett test som mater hjarnans prestation. Skulle detta vara méjligt sa hade man
kunnat trana hjarnan, och sedan belénat forutsagningsformagan, vilket man skulle extrahera som
nervsignaler i vissa omraden. Denna l6sning hade dock haft nackdelen att man inte skulle veta hur
mycket av den forutsagningsférmaga som uppstar som pa grund av synapsernas naturliga (STDP)
tendens att hitta samband, och hur mycket som bara ar en produkt av beléningssystemet. Av denna
anledning véljer jag darfor att méta hjarnans inlédrning genom direkt analys av natverket. En
renderingsmotor ar har mycket hjalpsamt da det blir mojligt att snabbt och enkelt géra en intuitiv
bedémning av hjarnans beteende och formaga, vilket ar fordelaktigt under utvecklingen och designen
av simulationssystemet. Genom andra verktyg gar det sedan att géra en mer objektiv och vetenskaplig
bedémning av systemet. Till exempel gar det att observera vilka omraden ar aktiva nar specifika inputs
ges.

1.2.2. Programmering
Programmeringsspraket som valjs satter grunderna for strukturen pa programmet, hur utforlig koden
behover vara, projektets arbetsfléde, var programmet kan kéras, samt hur snabbt koden kor. Eftersom
att koden i detta sammanhang skulle anvéndas i en simulation som med tid utvecklas mot ett visst
tillstand, som sedan analyseras, sa ar det fordelaktigt att detta tillstand nas sa snabbt som majligt i
forhallande till realtid. Darfor kravdes ett snabbt sprak, vilket oftast medfor ett lagnivasprak, dar
programmeraren har stor makt och ansvar att definiera algoritmerna i detalj genom att jobba néra
hardvaran. Bast lampat for detta &r C++, som dven har fordelen att det fungerar val i 3D miljoer. C++
ar en vidareutveckling pa C spraket, och har fler inbyggda funktioner samtidigt som det ger mycket
kontroll. Spraket har stod for objektorienterad programmering, vilket gor det passande i storre
simulationsprojekt, dar man har manga olika sorters objekt som alla har delat beteende.

Eftersom att C++ &r ett sprak som behdvs kompileras fore att det kors, sa kravs att man valjer en
kompilator. Kompilatorns roll &r att éversétta programmerarens kod i C++ till den maskinkod som
kors pa processorn. | detta projekt anvands MingW-kompilatorn pa Windows. Detta for att
kompilatorn &r vél integrerad med programmeringsmiljon CodeBlocks. Vid installation av
CodeBlocks kan véljas att &ven installera MingW. For att hantera 3D grafiken i renderaren sa kravs ett
API (applikationsprogrammeringsgranssnitt) som dels kan tala med hardvaran, och dels kan fungera
pa ett brett spektrum av mjukvarumiljéer. Har valjer jag OpenGL, vilket &r en sorts standard som
hardvarutillverkare har implementerat i sina enheter. Denna standard gor det méjligt for samma kod att

5 H. Markram, W. Gerstner, P. J. Sjéstrédm. Spike-Timing-Dependent Plasticity: A Comprehensive Overview.
Front Synaptic Neurosci. 2012. doi: 10.3389/fnsyn.2012.00002

6 CCNLab, CCNBook/Networks, https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Networks, 31
Mars 2015, (Hamtad 2016-11-20)
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kora och fungera (approximativt) lika pa olika system. OpenGL ansvar dock endast for att rendera
pixlar pa en skarmyta, det kravs ett annat API for att prata med operativsystemet for att kunna skapa
ett fonster. Har sa anvander jag GLFW, som ar plattformsoberoende (fungerar pa flera
operativsystem), och kan hantera och vidarebefordra anvandarinmatning till resten av programmet.

2. Undersokning och resultat

2.1. Bygga programmeringsmiljo
For att hantera alla filer under projektets gang sa anvandes GitHub (projektlank finns under bilagor).
Detta gor det mojlig att ha kontroll éver forandringshistoriken, dela min kod, och ha uppdaterade
sakerhetskopior pa en server. Det kravdes dven ett antal externa referenser, och det kravdes darfor
extra arbete for att konfigurera programmeringsmiljon. Efter att CodeBlocks och MingW hade
installerats sa laddade jag hem och installerade dessa externa referenser, vilka ar s.k. bibliotek som

innehaller kod som andra projekt kan importera och anvanda.
Tabell 1 Visar de namnet av bibliotek som anvénds i koden, samt vilken funktion de spelar.

Bibliotek Anvéndning

GLFW (& OpenGL) Skapa fonster och rendera 3D grafik.

GLM Forvara och bearbeta matriser och vektorer
GLEW Hantering av OpenGL tillagg

PicoPNG For att ladda in bilder fran .png format
dear imgui Programmering av anvandargranssnitt
Boost Stable vector -behallare

TinyExpr Tolka och berékna aritmetiska formler

MingW-mappen, vars plats valdes under installationen av CodeBlocks (standarplats ar i CodeBlocks-

mappen) har en undermapp med namn "bin". Denna mapp bor laggas till i miljévariabeln PATH, da den

innehaller flera program som behdver anropas under installation av biblioteken. Installationen sker
genom att flytta mappen med kallfilerna (.h, .cpp, eller .hpp) till under "includes" i MingW mappen.

Installationen av dessa bibliotek varierar och sker pa foljande vis:

1. PicoPNG, dear imgui, TinyExpr - Redan inbdddade i projektfilerna och féljer ner nar Git-projektet
laddas ner.

2. GLM, Boost - "gIm", samt "boost" -mapparna ldggs som undermappar i "includes"-mappen i
MingW-mappen. Detta tillater kompilatorn att hitta och anvéanda filerna nar programmet skapas.

3. GLFW - Laddas ner forkompilerat for Windows 32 bitars. | den nerladdade ZIP-filen finns en mapp
med namn “include” som slas ihop med den i MingW. De forkompilerade filerna finns under lib-
mingw” i ZIP-filen. Har ska de tva .a-filerna liggas till under “lib” i MingW. Den kvarvarande
.DLL-filen ska laggas pa ett stélle kant for projektets .exe-fil efter kompilering, till exempel i samma
mapp som den, eller i MingWs “bin”-mapp som lades till i PATH-variabeln tidigare.

4. GLEW - Finns i forkomplilerade versioner, men dessa fungerar ej for MingW-32, vilket betyder att
kompileringen behovs goras manuellt. Forst bor kallfilerna laddas ner (finns pa hemsidan), och
extraheras till sin egen mapp. Sedan kan kommandotolken 6ppnas i mappen (Ctrl + hdgerklick), och
féljande kommandon koras:

1. gcc -DGLEW_NO_GLU -02 -Wall -W -linclude -DGLEW_BUILD -0 src/glew.o -c
src/glew.c

2. gcc —nostdlib -shared -WI,-soname,libglew32.dll -WI,--out-implib,lib/libglew32.dll.a -0
lib/glew32.dll src/glew.o -L/mingw/lib -1glu32 -lopengl32 -1gdi32 -luser32 -lkernel32

3. arcr lib/libglew32.a src/glew.o

Detta skapar tre filer i GLEWs “lib”-mapp med tva .a- och en .DLL-fil som kan installeras pa samma

sitt som de i GLFW. Det finns dven en “includes”-mapp som bor slas ihop med den i MingW.

2.2. Struktur och grundlédggande system
Strukturen pa programmet ar utformad pa sadant satt att simulationsobjektet (sjalva hjarnan) kan vara
sjalvstandigt fran renderaren, som bara ges minnesadressen till simulationen. Renderaren kan pa sa
sétt extrahera information som sedan bearbetas om till pixelvarden som sedan skickas till skarmen.



Renderaren kan via denna minnesadress dven dndra pa simulationen. Detta ger anvandaren majlighet
att forandra till exempel simulationshastighet under kortid. Simulationsobjektet forvarar olika typer av
simulatorer. Gemensamt for dessa simulatorer &r att de alla k&nner till simulationsobjektet, och att de
har en korfunktion som uppdaterar objektet i forhallande till simulationens tidsvariabel. Avfyrar-
simulatorn ser till att avfyra vissa neuroner efter en viss frekvens som definieras i main-funktionen.
Det &r detta system som anvénds for att ge hjarnan de input-varden som sedan bearbetas.

Anvandarinmatning Renderare

N
.

Main()

Simulatorer
Figur 1 Visar de funktionella forhallandena mellan de olika klasserna (ovaler), anvandargranssnitt (romber), och main-
funktionen (rektangel). Streckad linje visar att informationsutbyte sker. Heldragna pilar mellan klasser visar att klassen till
hoger ager klassen till vanster. Klasserna inom den streckade rektangeln arver alla av simulator-klassen.

Simulationsobjektet dger en simulationslista vars uppgift det ar att kéra alla simulatorer vid ratt
tillfalle i ratt ordning. Varje simulator ansvarar for att schemaldgga tillfallen att koras i framtiden i
denna globala lista. Varje tillfalle sorteras automatiskt sa att det som ligger narmast i tid ligger forst.
Efter att ett tillfalle har passerat och simulatorn har korts sa raderas elementet ur listan. Detta system
innebar i praktiken att bara det som ar nédvandigt att simulera behdver simuleras, och sa att
simulationshastigheten kan variera utan att simulationens beteende foéréndras.

Nya schemaldggningar

___________________________________________________________________
H i
'
'

—

L
'

Simulationlista

Figur 2 Visar hur simulationslistan anropar kérfunktionen av simulatorn som det tillfalle som ligger ndrmast i tid (Iangst till
vanster) lankar till. Simulatorn kan da komma att schemalagga senare simulationstillfallen i framtiden, som d& sorteras in
beroende pa tid i simulationslistan. Efter att ett simulationstillfalle har fatt korfunktionen anropat sa raderas det, och
nastkommande tillfalle blir da forst i listan.

Genom att utveckla bade simulationen och renderaren parallellt sa blir det mgjligt att enklare reda ut
buggar, och forsta hur systemet beter sig under olika forhallanden. | C++ ar det vanligt att klasser och
globala variabler forst deklareras i s.k. header-filer (.h), for att sedan definieras i sjalva kod-filerna
(.cpp). Detta bidrar till battre dversikt av projektet, och gor det enklare att anvanda klasserna i andra
sammanhang utan att komma i kontakt med den interna koden som klassen sjélv anvander. | detta
projekt finns det framst tva viktiga header-filer. "NeuCor.h” deklarerar foljande klasser:



// Sjalva simulationen av hjarnan
class NeuCor {

// En schemalaggning med planerad tidpunkt och minnesadress till simulatorn
struct simulation {

// Abstrakt klass som ligger till grund till allting som simuleras
class simulator {

// Avfyrar neuronerna efter viss given frekvens, och ar en typ av simulator
struct InputFirer: public simulator {

// Neuron-klassen ar en typ av simulator
class Neuron: public simulator {

// Synaps-klassen ar en typ av simulator
class Synapse: public simulator {

// Enkel datatyp som fdrvarar 3D koordinater som float-varden (decimaltal)
struct coord3 {
Kodavsnitt 1 Visar vilka klasser och strukturer NeuCor.h deklarerar.

”NeuCor Renderer.h” deklarerar:
// Renderaren, som skapar ett fonster och ritar ut en visualisering av hjarnan i
3D
class NeuCor_Renderer {
Kodavsnitt 2 Visar vilka klasser och strukturer NeuCor_Renderer.h deklarerar.

Genom att dela upp simulationsklasserna och renderaren for sig sa blir det mojlig att bara inkludera
simulationen i sitt projekt, om det bara ar den som &ar nédvandig. Detta innebéar att man i sa fall inte
behdver installera alla bibliotek som renderaren behdver.

2.3. Implementering
Nar man i C++ skapar ett objekt av en viss klass sa anropas en konstruktor, en sort initieringsfunktion
vars uppgift det ar att konstruera objektet. De i header-filen definierade variablerna finns redan i det
nya objektet, men dom har inte nédvandigtvis nagra tilldelade véarden. | mitt projekt innebar det att
hjarnan ar tom nar den forst skapas, och att man i konstuktorn (eller senare) behtver placera ut
neuroner och synapser. Detta gor jag genom att ge hjarnans (NeuCor-klassens) konstruktor ett heltal
som in-parameter, vilket anger hur manga neuroner (med delvis slumpmassiga egenskaper) som
initialt ska placeras ut. Detta gors i tva steg: forst skapas och forvaras alla neuronerna, sedan skapas
kopplingarna (synapserna). Kopplingarna skapas genom att varje neuron mater avstandet till de andra
neuronerna, och om detta avstand ar mindre an 1 langdenhet, samt kopplingen inte redan finns, sa
skapas en synaps som gar fran den presynaptiska neuronen till den postsynaptiska neuronen. Denna
synaps forvaras i en behallare inuti presynaptiska neuronen. Denna metod innebér att det alltid
kommer finnas tva kopplingar at vardera riktning nar tva neuroner ar tillrackligt nara varandra.
Algoritmen ar dock ineffektiv da den maste jamfora avstanden till varje neuron for varje neuron, vilket
skapar en exponentiell tillvéxt i antalet berakningar som maste genomforas i och med att neuronantalet
okar (en s.k. O(n?) — algoritm inom Big O notation). Detta problem kan i framtiden I6sas genom att
placera koordinaterna av varje neuron i ett kd-trad, en binart partitionerande behallare som minskar
antalet nodvandiga jamforelser linjart med antalet neuroner. Detta ligger dock utanfor ramarna av detta
projekt. Nar neuron- och synapsobjekten skapas sa anropas dven deras konstruktorer, som i bada fall
ansvarar for att definiera objektens egenskaper, sa som: vilopotential, kopplingsstyrka, form pa
impulsspanning over tid, etc. Synaps-konsturkorn lagger dven en identifierare av sig sjalv i en sarskild
behallare i den postsynaptiska neuronen, vilket gor sa att denna neuron vet vilka input synapser den
har, &ven om den inte dger dem.



Neuroner kan skapas indirekt i hjarnan utanfor konstuktorn genom att anropa en av hjarnobjektets
funktioner:

// Initierar hjarnobjekt med @ neuroner.
NeuCor brain(@);

// Skapar neuron med koordinaterna: (-2.0, 1.25, 0.0)
brain.createNeuron({-2.0, 1.25, 0.0});

// Skapar neuron med koordinaterna: (0.0, 1.0, 0.2)
brain.createNeuron({0.0, 1.0, 0.2});

// Skapar neuron med koordinaterna: (0.0, 0.0, 5.0)
brain.createNeuron({0.0, 0.0, 5.0});

// Skapar neuron med slumpmdssiga koordinater
brain.createNeuron({NAN, NAN, NAN});

// Skapar kopplingar mellan alla narliggande neuroner
brain.makeConnections();
Kodavsnitt 3 Visar hur det gar att skapa neuroner i main-funktionen genom hjarnobjektet.

Nar NAN (not-a-number) anges sa skapas koordinaterna istallet slumpmassigt, jamt fordelade inom en
sfar. Detta gors genom att 3 slumpmassiga reella tal (x, y, z) genereras inom ett visst omfang. Om
dessa tal, nar de tolkas som 3D-koordinater, befinner langre &n ett visst avstand fran origo, sa forkastas
talen, och tre nya genereras, annars sa anvands talen som neuronens koordinater. Denna algoritm ar
enkel att implementera, men relativt ineffektiv da den forkastar en del av koordinaterna. Sannolikheten
att koordinaterna inte behover forkastas kan beraknas genom:

4.3
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Dér r ar det maximalt tillatna avstandet fran origo.

Efter detta ar hjarnan initierad, och redo att simuleras. Det ar har nédvandigt att skiva koden till de tre
simulatorerna, samt hjarnobjektet. | hjarnans globala kdrfunktion implementeras bakgrundsaktivitet
genom att varje neuron far en 1/600 per ms chans att avfyras spontant. Neuronens korfunktion
anropas regelbundet av bland annat hjarnobjektet (genom simulationslistan). Denna funktion
uppdaterar neuronens tillstand beroende pa hur mycket tid som har passerat sedan den senast
anropades.



void Neuron::run(){
// Hittar nuvarande tid och tidsskillnad
float currentT = parentNet->getTime();
float deltaT = currentT - lastRan;
lastRan = currentT;

// Gar ur funktion om ingen tid har passerat (for att undvika oandliga loopar)
if (deltaT == 0) return;

// Integrerar potentialen av aktiva insynapser
charge_insynapses(deltaT, currentT);

// Vaxer / avtar neuronens potential exponentiellt mot basnivan
charge_passive(deltaT, currentT);

// Kontrollerar om neuronens potential ar over trdskeln,
// och avfyrar i sadana fall neuronen
charge_thresholdCheck(deltaT, currentT);

// Styr potentialen efter funktion om neuronen hdller pa att avfyra
AP(currentT);

// Uppdaterar aktivitets-variabeln
setActivity(firings/(((float) currentT-activityStartTime)/10.0));

Kodavsnitt 4 Visar utseendet av neuron-klassens kor-funktion.

Aktivitets-variabeln, som haller reda pa avfyrningsfrekvens, beraknas aven. De fyra andra
funktionerna som anropas reglerar neuronens nuvarande elektriska potential. Medlemsfunktionen
(d.v.s. en funktion som endast tillhor klassen) charge insynapses” dr neuronens forbindelse med sina
in-synapser. Denna funktion 6kar neuronpotentialen med: Y% (f; * At * g(At)) dér a &r antalet aktiva
synapser, At ir tid sedan senast uppdatering, fi & impulsstyrkan fran en specifik synaps, och g(At) =
0.9943 % ¢%-3702*At 4r en funktion framtagen genom regression som gor sa att beteendet ar desamma
oavsett At. En synaps rakans som aktiv i 2 ms fran borjan av en impuls. Denna funktion &r en kraftigt
forenklad modell av hur dendriter tar upp neurotransmittorer i det synaptiska gapet, och hur dessa
signaler sedan summeras i neuronen. Istéllet for att integrera en impulsspanningens forandring over tid
sa integreras endast ett konstant varde Gver tid. Detta forenklar de matematiska berakningarna som
datorn behdver utféra och gor hjarnans beteende mindre invecklat.

Efter att in-synapsernas impulser har integrerats och summerats sa anropas “charge passive”, vars
uppgift det ar att fa neuronens potential att ga mot sin vilopotential (b), vilket &r -70 mV, dver tid.
Detta gor pd exponentiellt vis genom funktionen pyppaaterada = Pruvarande — b) * cAt + b, dér c &r
forandring per ms, vilket i simulationen &r 0,5.
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Figur 3 Exemplet visar att potentialen (p) alltid gar mot vilopotential dver tid sedan senast korning (At) oavsett startvarde.

Nista funktion, ”charge thresholdCheck” kontrollerar om huruvida neuronens potential &r Gver en viss
troskelpotential (-55mV). Om det ar fallet och neuronen eller synapsen inte redan haller pa att avfyras,
sa anropas neuronens avfyrningsfunktion. Denna funktion utfor ett antal uppgifter. Den okar
neuronens avfyrningsraknare (som anvands for att avgora aktiviteten) med 1, satter spar-variabeln till
1, och satter neuronens variabel for senaste avfyrning till den nuvarande tiden. Utdver detta sa avfyrar
den STDP-inlarningsalgoritmen i alla in synapser, samt anropar alla ut-synapsers avfyrningsfunktion
med impulsstyrkan som parameter.

Den sista funktionen som andrar potentialen i neuron-klassen ir ”AP”. Denna funktion ger formen pa
neuronens spanning under en nervimpuls. For att forsta anledningen till denna form, sa &r det
nodvandigt att forsta den underliggande biokemiska processen bakom. Med begreppet potential menas
i detta sammanhang skillnaden pa den elektriska spanningen inuti och utanfor en neurons
cellmembran. Spanning uppstar pa grund av olika jonkoncentrationer, vilket ar ett resultat av de
natrium-kaliumpumpar finns i cellmembranet. Dessa proteinpumpar jobbar for att bibehalla
natriumjoner (Na*) utanfor cellen och kaliumjoner (K*) inuti cellen. Utan dessa skulle
jonkoncentrationerna utanfor och inuti cellen bli desamma pa grund av att membranet ar super
permeabelt for kaliumjoner och delvis permeabelt for natriumjoner. Det ar detta som far
membranpotentialen att ga mot vilopotential (-70 mV). En nervimpuls &r en hastig och skarp
forandring i jonkoncentration, och darmed ocksa den elektriska potentialen. Denna forandring uppstar
nér spanningsstyrda jonkanaler, som &ven de finns i membranet, 6ppnar och stanger flédet av joner
beroende pa den aktuella spanningen i membranet. Nar excitatoriska in-synapser aktiveras, sa flodar
det in positivt laddade joner i neuronen, vilket kar den elektriska spanningen. Om den elektriska
spanningen overstiger en viss troskelpotential (-55 mV) sa 6ppnas de spanningsstyrda
natriumkanalerna som normalt satt ar stangda, vilket gor sa att det flodar in natriumjoner in i cellen.
Detta far membranpotentialen att stiga (till ca +30 mV) och kallas depolarisering. Vid detta tillfalle
borjar natriumkanalerna att stanga, och natriumjonerna bérjar pumpas ut ur cellen igen pa grund av
natriumpumparna. Samtidigt sa borjar de annars stangda spanningsstyrda kaliumkanalerna éppnas,
vilket orsakar att kaliumkoncentrationen inuti cellen minskar, och darmed ocksa cellens
membranpotential. Detta kallas repolarisering. Nar vilopotential nas, sa stangs inte dessa
kaliumpumpar omedelbart, utan det fortsatter 1acka kaliumjoner ur cellen. Detta gor att
membranpotentialen temporart understiger vilopotentialen, vilket kallas hyperpolarisering.



Kaliumpumparna aterstéller sedan kaliumjonskoncentrationen, och neuronen har da helt aterstallda
jonkoncentrationer samt en aterstallt membranpotential.”

Detta biologiska uppfdrande modelleras i AP-funktionerna, men kommer har representeras med
matematisk notering. Véardet som funktionen V(t) ger (dar t ar tiden i ms sedan senast avfyrning
paborjades), blir neuronens potential om en avfyrning ar pagaende. Genom att simulera den relativa
mangden natrium- och kaliumjoner éver tid, och sedan summera dessa tva mangder, sa gar det att
avgora hur neuronens potential forandras dver tid. Min bedémning har har varit att anvanda
Gaussfunktion for att modellera de relativa jonméngderna under en nervimpuls.
(t-dy)?

Na*(t) = aje 2w1?

_(t—dz)z
K*(t) = ae 2w2°
Aven hér ar t tid sedan senast avfyrning paborjades. Jag har valt att i simulationen anvanda vardena:
a; = 1; d1 = 1; Wi = 0.3; a, = _0.2; d2 = 2.16; Wy = 0.6
Observera att vardet a, ar negativt, da den relativa mangden K* innanfor cellmembranet forst minskar,
och sedan okar.
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Figur 4 Visar hur den relativa mangden av Na*- och K*-joner forandras over tid sedan borjan av impuls (t) i forhallande till
varandra.

Genom att utga fran dessa tva funktioner gar det att konstruera \V/(t):

V() =f*(Na*(®) +K*(t))+ b+ (T —b) *max (1 — ¢t; 0)

Hér &r b vilopotential (-70 mV), T tréskelpotentialen (-55 mV), och f &r 100. Den sista termen

(T — b) * max (1 — t; 0) adderas for att astadkomma att impulspotentialen borjar pa
troskelpotentialen istéllet for vilopotentialen. Funktionen max returnerar det hogsta vérdet av de
invariabler som anges. Uppmarksamma att funktionen V/(t) bara galler i 2 ms fran borjan pa avfyrning.
Detta pa grund av den beddmning jag har gjort att en impuls raknas som pagaende i 2 ms (med dessa
valda konstanta varden). Efter denna tid ar det mojligt for neuronen att ater igen avfyras.

7 Khanacademy, Neuron action potentials: The creation of a brain signal, https://www.khanacademy.org/test-
prep/mcat/organ-systems/neuron-membrane-potentials/a/neuron-action-potentials-the-creation-of-a-brain-
signal (Hdmtat 2017-02-28)
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Figur 5 Visar hur potentialen (p) forandras 6ver tid sedan bérjan av impuls (t) nar funktionen V(t) anvands.

Nar en neuron avfyrar en synaps, vilket sker i borjan av en impuls, sa raknar synapsen i fortid ut hur
lang tid det kommer att ta for impulsen att na fram till malneuronen genom att multiplicera synapsens
signalutbredningshastighet (2 langdenheter per ms) med synapsens langd. Vid denna framtida tidpunkt
schemaldggs ett anrop av synapsens kor-funktion. Nar kor-funktionen anropas sker féljande: det
schemalaggs en korning av malneuronen vid impulsens sluttid (efter 2 ms), synapsen lagrar nuvarande
tid i medlemsvariabeln “lastSpikeArrival”, och plasticitetsfunktionen ”synapticPlasticity” anropas.
Denna funktion forandrar synapsens styrka, vilket ar en faktor nar impulsstyrkan beréknas. Med andra
ord har en stark synaps en storre paverkan pa malneuronen. En excitatorisk synaps har enklare att
formedla en impuls vidare, och en stark inhibitorisk synaps (med ett negativt styrkevarde), har enklare
att forhindra att malneuronen avfyras. Plasticitetsfunktionen (som implementerar STDP-inlarning)
anropas, som tidigare omnamnt, vid tva tillfallen: nar malneuronen avfyras och nar en signal nar fram
till malneuronen i synapsen. Funktionen utgar fran att det lamnas ett spar direkt efter en avfyrning i
alla neuroner respektive synapser. Detta spar far vardet 1 vid avfyrning, och avtar sedan exponentiellt
over tid (65 % per ms i neuroner, 75 % avtagande per ms i synapser). Berdkningen av vardet av de tva
sparvariablerna gér genom: S,, = a,,"™ ™™ samt S, = a ‘"%, ddr S &r spar-variabler, a & avtagande
per ms (a, = 0.65, as = 0.75), tn, ar nuvarande tid, t; ar tid nar en signal senast nadde fram till
malneuronen i synapsen (’lastSpikeArrival”), och tn ar tid vid borjan av senast impuls i malneuron.
Det ar viktigt att spar-variablerna uppdateras efter att plasticitetsfunktionen har anropats for att
inlarningen ska fungera som avsett. Detta garanteras genom att lata variabeln bli 0.0 och den var exakt
lika med 1.0. Nar sparvariablerna ar beraknade anvands de for att berakna den resulterande skillnaden
i styrka av synapsen genom Aw = f * (fs * S¢ — f, * Sp), dar fy ar den globala inlarningsfaktorn
(med standardvérde 1.0) som anvands for att kontrollera hur hastigt synapsstyrkorna férandras globalt.
Variablerna f (standardvérde 0.13) och f, (standardvérde 0.30) andrar plasticitetsfunktionens preferens
for negativa jamfort med positiva Aw. Efter att skillnaden i synapsstyrka har applicerats sa anvands
varde-clamp for att halla styrkan inom ett visst omfang (0.0 till 1.0 for excitatoriska synapser, -1.0 till
0.0 for inhibitoriska).

2.4. Anvéandning

2.4.1. Bibliotek
En anvandare av biblioteket importerar min kod i dennas projekt, och kan pa sa sétt anvanda min
simulationsmodell utan att sjalv behova forsta hur simulationen fungerar i detalj. En forstaelse av de
externa granssnitt jag har designat ar istéllet tillrdckligt. Koden kan klonas med GitHub
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(lank till projekt finns under Bilaga 1). Kloningen kan ske genom standard konsolbaserad GitHub,
dven om jag rekommenderar att anvanda GitHub Desktop da det har ett grafiskt anvandargranssnitt
som ar enklare att anvanda. Efter detta krévs att anvandaren gar igenom den process att installera
nddvéndiga bibliotek, som anges i avsnitt 2.1 Bygga programmeringsmiljd. For att hantera
simulationen krévs endast att anvéndaren hanterar objekt av klassen ”NeuCor”. De publika funktioner
och variabler som finns i denna klass &r dokumenterade i header-filen pa engelska, och pa svenska
nedan.

NeuCor(int n_neurons);
// Konstruerar klassen. n_neurons parameter ar antal neuroner som skapas initialt

void run();
// Kor hela simulationen

float runSpeed;
// Hur mycket tid (i ms) som simuleras nar run() anropas (standardvdrde 1.0)

bool runAll;
// Sant falskt varde om huruvida alla neuroner bor simuleras (standardvarde
falskt)

float getTime() const;
// Returnerar hur mycket simulationstid (i ms) som har forflutit

float learningRate;
// Ar den globala inldrningsfaktorn f; (standardvirde 0.6)

float presynapticTraceDecay, postsynapticTraceDecay;
// Avtagande per ms av alla synapsers respektive neuroners sparvariabler
(standardvarde 0.5, samt 0.9)

void setInputRateArray(float inputs[], unsigned inputCount, coord3
inputPositions[] = {NULL}, float inputRadius[] = {NULL}));

// Parametern ”inputs” &r en array av float-varden som anger (i Hz)
avfyrningsfrekvensen av de avfyrare som finns i hjdrnan. ”inputCount” anger
antalet element i denna array. Eftersom att det ar minnesadressen till array som
forvaras, sa uppdateras avfyrarna automatiskt efter de vdrden dom finns pa
minnesadressen ndr run() anropas. Parametrarna ”inputPositions” och ”inputRadius”
ar ej nodvandigt, men definierar positionerna och radien pad avfyrarna i hjarnan.

void addInputOffset(unsigned inputID, float t);
// Forskjuter given avfyrares (inputID) ndsta avfyrning med given tid t (ms). Gar
aven att anvanda negativa tidsvarden.

void createNeuron(coord3 position);
// Skapas positioner vid givna koordinater. Om NAN anges som koordinatvarden, blir
positionen slumpmassig.

void createSynapse(std::size_t toID, std::size_t fromID, float weight);

// Skapar synaps mellan fran en neuron (”toID”) till en annan (”fromID”) med given
styrka (”weight”).

void makeConnections();

// Skapar tva kopplingar mellan alla neuroner mindre an 1 langdenhet fran
varandra.

Kodavsnitt 5 Visar anvindning och funktion av de publika medlemmarna i ”NeuCor”-klassen.
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Renderaren har fler publika medlemsvariabler och funktioner. Av dessa kommer dock endast de
nodvandiga forklaras da flera av dessa antingen ar sjalvforklarande, eller ar till for att genom extern
kod kunna &ndra status pa sadana variabler som annars gar att andra pa inom anvandargranssnittet.
Dokumentation for dessa essentiella medlemmar av klassen ”NeuCor_Renderer” star nedan. Ett
exempelprogram som demonstrerar hur “NeuCor” och "NeuCor_Renderer” kan anvéindas tillsammans
finns i Bilaga 3.

NeuCor_Renderer(NeuCor* _brain);

// Konsturerar renderare. “_brain” parameter ar en pointer till hjarnan.

float getDeltaTime();
// Returnerar verklig tid som har passerat sedan korning av updateView()

bool runBrainOnUpdate;
// Om renderaren bor kéra hjarnan i ndr updateView() (standardvarde falskt)

void updateView();
// Renderar hjarnan och visar den i foOnstret

void pollWindow();
// Ber Windows ange de handlingar som anvandaren har utfort. Denna funktion ar
nodvandig for att Windows inte ska registrera fonstret som fruset.

Kodavsnitt 6 Visar anvandning och funktion av publika medlemmar i "NeuCor Renderer’-klassen. Bygga
programmeringsmiljo

2.4.2. Grafiskt granssnitt
En forkompilerad version av koden finns att ladda ner under Bilaga 2. Det grafiska granssnittet bestar
av dels renderingen av hjarnan, och dels de paneler som biblioteket ImGui anvénds for att skapa. Med
detta granssnitt gar det att avlasa information om hjarnan for att forsta dens beteende, och till viss del
dven att andra hur hjarnan kors. Nar renderaren forst oppnar fonstret (se Figur 6) gar det att anvanda
och flytta runt menyerna. Genom att klicka pa rubriken ”Controls” s& 6ppnas en lista som detaljerar
hur man kan anvanda tangentbord och mus for att manipulera renderingen. Matning kommer bland
annat goéras med de tre grafer som finns under menyn ”Statistics” (se Figur 7, Figur 8, Figur 9),
neuron-potentialsgrafen (som visas ndr en neuron markeras och dess fonster 6ppnas, se Figur 10), och
synaps-styregrafen (som finns under synapsmenyer i neuron-fonstret, se Figur 11). Pa grund av
begransningar med ImGui har det ej varit mojligt gradera dessa grafer.
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Figur 6 Visar ett exempel pa hur rendering av paneler (vanster) samt hjarnan ser ut pa skarmen. Synapserna visas som
streck, vita ifyllda ringar ar neuroner, icke ifyllda ringar ar avfyrare.

Meuron actiwiky diskribukion

Figur 7 Visar granssnittsgraf (under menyn "Statistics™) som indikerar fordelningen av avfyrningsfrekvenser (x-axel) av
neuroner i hjarnan. Grafens egenskaper kan dndras genom att klicka pa den.

Synapse weight distribution

Figur 8 Visar granssnittsgraf (under menyn "Statistics™) som indikerar férdelningen av avfyrningsfrekvenser (x-axel) av
neuroner i hjarnan. Grafens egenskaper kan dndras genom att klicka pa grafen.
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Figur 9 Visar rastergraf (under menyn "Statistics™) av neuroners avfyrningar. Varje prick ar avfyrning. X-axel ar tid
(narmast i tid till vanster), y-axel ar neuronens ID-nummer. X-axelns omféng gar att &ndra genom att klicka pa grafen.

Yoltage graph

Figur 10 Visar potentialgraf (neuron-fonster) av vald neurons spanning (y-axel) éver tid (x-axel, némasti i tid till vanster).
Den morka linjen markerar troskelpotential.

Figur 11 Visar synapsinformation (utsynaps-listan langs ner i neuron-fonster), for synapsen som gar fran neuronen med id
229 till malneuronen med id 79. Grafen visar synapsstyrka (x-axel, narmast i tid till vanster) 6ver tid.

Figur 12 Visar de olika renderingslédgena. Lage 1 visar spanning av synapser samt synapsernas typ (rosa ar excitatoriska,
bla ar inhibitoriska). Lage 2 visar synaptisk styrka (rosa ar excitatoriska, bld &r inhibitoriska) med avfyrningssekvens som
faktor (gar att stinga av i meny) for att de viktigaste synapserna ska synas tydligast. Lage 3 visar avfyrningsfrekvens av
presynaptisk/postsynaptisk neuron (beroende pa ande av synapslinje). Lage 4 visar hur signalerna sprider sig fran de
markerade neuronerna. Detta tar hénsyn till synapsstyrka. Lage 5 renderar endast neuroner.

Ut6ver dessa grafer finns det &ven ett antal olika renderingsldgen som presenterar information i
renderingen genom att d&ndra genomskinligheten av synapserna. De fem olika renderingslagena
forklaras i Figur 12. Renderingslaget som visar avfyrningssekvenser har utékad funktionalitet (Figur
13), som &r anvandbart for analys da det illustrerar hur aktiverade vissa delar av hjarnan &r i olika
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tillstand. Forandring av aktivitetsmonster i natverket kan antingen ske pa grund av att plasticiteten har

forandrat hur signaler sprids, eller for att de inputs som kommer genom avfyrarna har forandrats.
Rendering mode:

Ackiviky

a

Expression

Figur 13 Visar menyn for renderingslaget som visar avfyrningsfrekvenser. Nuvarande véarden kan sparas i variabler
(bokstaverna) genom att klicka pa den stora roda knappen. Dessa varden kan sedan bearbetas genom det aritmetiska uttryck
som anges i textfaltet, vars resultat visas i renderingen av synapserna. Det ar aven mojligt att aterstalla neuronernas aktivitet
(Ctrl och klick pa stora réda knappen), sé ett nytt genomsnitt kan beraknas.

2.5. Resultat

2.5.1. 3 neuroner med 3 avfyrare
3 neuroner placeras och kopplas ihop enligt Figur 14. Varje neuron har en avfyrare var, med
avfyrningsfrekvensen 50 Hz. Frekvenserna for avfyrarna for neuronerna med ID 1 och 2, &r forskjutna
med +2, respektive -2 ms. Detta innebar att neuron 1 alltid kommer avfyra 2 ms efter neuron 0, och
neuron 2 alltid kommer avfyra 2 ms fore neuron 0. Alla neuroner simuleras vid varje kdrning, och
resten av instéllningarna har standardvérden. Programmet har namnet 3 neurons_3_inputs.exe” i
mappen som kan laddas ner fran lanken i Bilaga 2.

Avfyrare
50 Hz
+2ms

Neuron
ID:1

Aviyrare
50 Hz
+0ms
Styrka
05
Neuron
ID:0
Styrka
05
Avfyrare
50 Hz
-2ms

Figur 14 Neuronen med ID 0 kopplar till neuronerna 1 och 2 (ensriktat) med synapser av styrkan 0.5. Varje neuron har
varsin avfyrare med frekvensen 50 Hz. Impulserna fran avfyrarna for neuronerna 1 och 2 ar forskjutna med +2, samt -2 ms.

Denna konfiguration resulterar i att synapsen fran neuron O till 1 succesivt okar tills styrkan 1.0 &r
nadd, och att synapsen fran neuron 0 till 2 succesivt minskar tills styrkan 0.0 &r nadd. Detta tar i snitt
ca 120 ms simulationstid. Pa grund av bakgrundsaktivitet aktiveras neuronerna ibland slumpmassigt,
vilket paverkar synapsstyrkorna, &ven om det i slutdndan inte forandrar det slutgiltiga tillstandet.

2.5.2. 750 neuroner med 1 avfyrare
Har placeras en avfyrare pa koordinaterna (2.0, 0.0, 0.0), med radien 0.8 och en konstant
avfyrningsfrekvens av 35 Hz, i en hjarna med 750 neuroner. Alla andra installningar har
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standardvérden. Programmet har namnet ”750_neurons_1_input.exe”. De slumpmaéssiga variablerna
utgar fran nuvarande tid, och kommer av den anledningen att variera fran korning till kdrning. Darfor
presenteras i denna resultatdel natverkets normala uppforande, dven om en specifik kérnings
uppférande kan variera.

I bérjan av simulationen &r aktiviteten i hjarnan endast utlost av bakgrundsavfyrningarna. Efter ca 15
ms har dock en exponentiell fortplantning av impulserna initierats, som pa kort tid aktiverar stérre
delen av neuronerna i natverket. Under detta stadie forskjuts majoriteten av de positiva
synapsstyrkorna mot 0 (vilket kan avlasas over tid fran grafen i Figur 8). Neuronernas aktivitet
minskar &ven under ett férlopp av ca 160 ms. Vid denna tidpunkt fortplantar sig avfyrarens impulser
endast ett kort avstand innan de dor ut. Efter 5 sekunders simulationstid sprider sig impulserna fran
avfyraren till resten av hjarnan. Det uppstar &ven mindre omraden av konstant aktivitet (se Figur 15),
som sedan dor ut.

Figur 15 Rastergraf efter 5 sekunders simulationstid av natverk med en avfyrare. Det periodiska monstret dver tid uppstar
nar avfyraren (35 Hz) skickar impulser. De horisontella raderna visar neuroner som &r del av mindre sjalvbérande kretsar,
och vars aktivitet darfor ar konstant.

2.5.3. 750 neuroner med 3 avfyrare
Detta test har samma konfiguration som det innan, med annat antal och ett annat beteende av
avfyrarna. Programmet heter ”750 neurons 3 inputs.exe”. Tre avfyrare med radien 0.8 placeras i en
liksidig triangel med ett avstand av 2 fran centrum av natverket (origo). Avfyrare 0 och 1 har alltid
samma avfyrningsfrekvens. De initiala avfyrningsfrekvenserna for avfyrare 0 och 1, samt 2, &r ett
slumpméssigt véarde mellan 0 och 75 Hz. Varje millisekund uppdateras avfyrningsfrekvenserna genom
att addera ett slumpmassigt varde mellan -1 och 1, men kan inte ga under eller 6ver vardena O
respektive 75 Hz. Vid 10.0 sekunder pabdrjas matningarna. Inlarningsfaktorn (fq i avsnitt 2.3
Implementering) blir 0, vilket stanger av inlarningen sa att matningarna inte paverkar hjarnans
beteende. Under perioden 10.0 till 10.2 sekunder blir alla avfyrningssekvenser 0, och mellan perioden
10.2 och 10.6 sekunder far endast avfyrare 2 frekvensen 50 Hz. Mellan 10.6 till 10.8 sekunder slas ater
igen alla avfyrare av, och mellan perioden 10.8 och 11.2 sekunder sa far avfyrare 0 och 2 frekvensen
50 Hz.

Aven hir overgdr natverket efter ca 15 ms till global konstant aktivitet, vilket far synapsstyrkorna att
sjunka. Resultatet av matningarna efter 10 sekunder redovisas nedan.
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Figur 16 (a.) Visar hjarnans aktivitet under perioden 10.2 till 10.6 sekunder, da endast avfyraren med ID 2 &r aktiv (50 Hz).
Avfyrarnas ID i férhallande till position géller aven for resten av figuren. (b.) Visar hjarnans aktivitet under perioden 10.8
till 11.2 sekunder, da avfyrarna 0 och 1 &r aktiva (bada 50 Hz). (c.) Visar hjarnans aktivitet i a. subtraherat med hjarnans
aktivitet i b (verktyget i Figur 13 anvéands). Har syns alltsa de neuroner som avfyrades under endast perioden i a. som rosa,
och de endast under perioden i b. som bla. (d.) Visar aktiviteten i a. multiplicerat med aktiviteten i b. Detta visar de omraden
som ar aktiva under bada perioderna.

3. Analys och diskussion

Tanken bakom simulationskonfigurationen i avsnitt 2.5.1 var att till viss del efterlikna det verkliga
experimentet gjort i rapporten ”Synaptic Modifications in Cultured Hippocampal Neurons:
Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type”.® Har har tva fysiska
neuroner med en synaps mellan stimulerats regelbundet och synkroniserat, med ett visst intervall
tidsskillnad. Ett positivt tidsintervall, da den presynaptiska neuronen avfyras efter den postsynaptiska
neuronen, resulterar i en gradvis 6kning av den potential som synapsen orsakar i postsynaptiska
neuronen, och ett negativt tidsintervall ger istéllet en minskning. | simulationen gors samma sak, dven
om det for enkelhetens skull &r synapsstyrkan som mats direkt istallet for resulterande potential.
Resultatet visar att denna simulationsmodell stammer 6verens med verkligheten (inom ramarna av
detta test). Detta betyder dock inte att alla aspekter av plasticiteten modelleras. Till exempel sa beror i
verkligheten forandringen i synapsstyrka aven pa sjéalva synapsstyrkan. En svag synaps har enklare att
bli starkare dn en redan stark synaps.? Jag har valt att inte inkludera detta for att inte komplicera
analysen samt for att inte gora det svarare att balansera hjarnans aktivitetsniva. De inhibitoriska
synapsernas uppforande ar inte baserat pa nagon verklig studie, utan féljer samma regler som de
excitatoriska synapserna. Allménna och enkla regler som alltid géller & inom programmering en bra
taktik for att undvika buggar, och bidrar till ett robustare system som ofta ocksa ar enklare att forsta.
Detta resulterar dock i ett dilemma nar man modellerar biologiska system. Evolutionen har en formaga
och en tendens att konstruera system med en hog komplexitet, som darmed ar svara att modellera med
exakthet. Darfor kravs det att jag som programmerare dels gor bedémningen till vilken detaljniva
simuleringen bér modellera, samt vilka delar av de biologiska systemen som gar att forenkla. Att
anvanda ett kontinuerligt system for synapsstyrkorna, i stallet for att simulera olika typer och mangder
av neurotransmittorer ar en sadan forenkling. Den digitala domanen ger ofta friare spelregler &an den
fysiska, vilket innebdr att digitala system ofta inte krdver samma komplexitet som de biologiska for att
uppna samma funktionalitet. Det finns dock andra begrasningar med de digitala systemen, sa som
datorkraft, som man som programmerare behover ta hansyn till.

Simulationskonfigurationen i 2.5.2 visar att natverket sjalv kan motverka den aterkoppling av impulser
som till en borjan orsakar den kaosartade konstanta aktiviteten i hela hjarnan. Det ar kaoset som gor
det omojligt for en synaps att konsekvent avfyras fore dess malneuron, vilket gor att alla synapser
forsvagas. Det gar dven att se hur impulserna fran avfyraren fortplantar sig till allt stérre delar av
natverket. Trots att det alltid gar en synaps i vardera riktning, sa betyder STDP-plasticiteten att bara en
av dessa synapser kommer bli stark, samtidigt som den andra blir svag. Detta innebdr att avfyrarens
impulser enkelriktas ut fran sjalva avfyraren. Beslutet att lagga till bakgrundsaktivitet kom sent i
arbetet, men visade sig vara nyckeln till att fa det omrade som avfyrarnas impulser fortplantar sig till

8Guo-giang Bi, Mu-ming Poo. Synaptic Modifications in Cultured Hippocampal Neurons:
Dependence on Spike Timing, Synaptic Strength, and
Postsynaptic Cell Type. The Journal of Neuroscience. 1998. PMID: 9852584.
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att expandera dver tid. Bakgrundsavfyrningar i inaktiva eller redan aktiva delar av natverket paverkar
séllan synapsstyrkorna. Om dock en bakgrundsavfyrning sker i en inaktiv neuron vid grénsen av
avfyrarens aktiva omrade sa sker tva mojliga saker beroende pa om bakgrundsavfyrningen sker direkt
fore eller efter att avfyrarens impuls anlander. Om den sker direkt fore sa forsvagas synapsen mellan
den aktiva och den inaktiva synapsen nagot, vilket i sin tur inte leder till ndgot. Om den sker direkt
efter sa starks synapsen, vilket i sin tur kan leda till att den aktiva neuronen sjélv kan avfyra den
tidigare inaktiva neuronen, vilket leder till att synapsen starks ytterligare. Nettoeffekten av detta ar att
det & mer troligt att bakgrundsaktiviteten leder till att avfyrarens aktiva omrade blir stérre &n mindre.
Dock s& uppstar det omraden av bara ett fatal neuroner, som alltid ar aktiva. Detta for att signalerna
aterkopplar, och darmed blir sjéalvbarande. Bade formandet och destruktionen av dessa kretsar verkar
triggas av bakgrundsaktiviteten, men hur de fungerar och kan motverkas behdvs understkas vidare. En
ide &r att infora ett energisystem, som “utmattar” annars evigt aktiva neuroner.

Det sista experimentet, i avsnitt 2.5.3, har syftet att testa fragestallningen: kan systemet bygga upp en
intern intuitiv modell av sambanden mellan dess inputvarden? Hjarnan ges tre inputs (genom
avfyrarna), varav tva ar lankade (avfyras alltid samtidigt). Det faktum att de tva avfyrarna som ar
lankade, kopplas ihop och isoleras fran den icke lankande avfyraren (Figur 16), visar att hjarnan har
hittat och forstar sambandet. Detta bekraftar fragestallningen, dven om det inte sager mycket om i
vilken utstrackning hjarnan faktiskt kan gora detta. For att méata detta skulle det till exempel ga att oka
antalet inputs. Skulle hjarnan reda ut sambanden mellan 10 avfyrare? Det gar dven att komplicera
typen av samband mellan input-véardena, genom att till exempel fordréja tiden mellan att tva avfyrare
aktiveras, eller genom att utnyttja den temporala kodning som systemet tillater. | princip sa bor detta
natverk kunna finna en lang rad av olika sorters orsakssamband. Genom att mata in pixelvarden fran
en bild som inputs, sa skulle natverket sannolikt lara sig klassificera mellan olika objekt i bilden. Ett
hinder for detta ar dock berdkningsintensitet, som dkar skarpt med antal neuroner. En méangd
berakningsmassiga optimeringar skulle kunna utforas, dven om det ibland skulle vara pa bekostnad av
den biologiska modelleringens verklighetstrogenhet. Att implementera ett sorts beldningssystem skulle
vara ett givet nasta steg for detta projekt, da detta skulle ge mojligheten att lata hjarnan styra virtuella
agenter for att I6sa andra problem &n att hitta samband. En annan mdjlig riktning &r att tréna upp en
sorts allménbildning hos en given hjarna, vilket var den ursprungliga avsikten med arbetet. Detta
system skulle da bli ett satt att lata datorer sjalva utveckla en grundlaggande intuitiv forstaelse av
koncept som fysik och psykologi.
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5. Bilagor

Bilaga 1 - GitHub projektlank
https://github.com/Axelwickm/NeuroCorrelation/tree/Snapshot

Bilaga 2 - Forkomplilerade exempel nerladdning
https://drive.google.com/drive/folders/O0B56HcM6Y9ImY5VKNWQONY4S0xCRms?usp=sharing

Bilaga 3 - Ett enkelt program som forst skapar en hjarna med 100 neuroner, och sedan
Oppnar ett fénster som visar nér denna hjarna renderas.

#include <NeuCor.h>
#include <NeuCor_Renderer.h>

int main(){

// Initerar hjarnobjekt med 100 neuroner
NeuCor brain(100);

// Skapar en array med 3 float-varden
float inputs[] = {20.0, 2.5, 150.0};

// Ger denna array till hjanan
brain.setInputRateArray(inputs, 3);

// Satter tidsteg till ©.05 ms per korning
brain.runSpeed = 0.05;

// GOr sa att alla neuroner alltid simuleras vid korning
brain.runAll = true;

// Initierar renderare och ger den minnesadressen till hjarnan
NeuCor_Renderer renderer(&brain);

// Stiger in i en loop som kors sa lange som fonster ska vara oOppet
while (true){

// Simulerar hjarnan
brain.run();

// Hamtar anvandarhandlingar
renderer.pollWindow();

// Ritar ut pa skarmen
renderer.updateView();

}

return 0;
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