
 
 

 

Polhemsskolan 

 

 

 

 

 

 

 

 

 

Neurokorrelation 
Simulation av neuronnätverk 

 

 

 

 

 

 

 

 

 

 

 

Axel Wickman  

  Gymnasiearbete 100 poäng 

    Klass TeInf3a 

    Teknikprogrammet 

    Läsåret 2016/2017 

    Handledare: Mikael Bondestam 

 

  



 
 

 

Abstract 
The power of machine learning systems is becoming increasingly clear, as recent 

advancements in the field has shown. However one problem seems to endure: the slow 

learning rate of these systems, which is greatly surpassed by that of humans. One proposed 

solution to this problem is to give the systems general prior knowledge, which can then be 

used to make assumptions about the dynamics of new environments, which in turn can then 

be used to solve new problems at an accelerated rate. To do this, a system which can find and 

model the correlation between external inputs, is proposed. Here a digital simulation of 

human nerve cells has been constructed in order to model and exploit the fundamental 

learning mechanics of the brain. Results show that the model behaves like real test show on a 

cellular level, and that in a bigger network a correlation is indeed found between a small 

number of given inputs.  
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1. Inledning 
De senaste åren har flera stora framsteg gjorts inom det vetenskapliga området maskininlärning. Ökad 

datorkraft, mer investeringspengar från företag, samt ett större allmänt intresse gällande området, har 

bidragit till detta. Det finns en stor entusiasm bakom möjligheten att få datorer att tänka mer som 

människor, då det gör det möjligt att eliminera mänskliga tillkortakommanden ur vissa arbetsuppgifter. 

En tänkande dator kan jobba dygnet runt, och är ofta billigare, säkrare, och snabbare än en tänkande 

människa. Redan idag så ser vi maskininlärningsalgoritmer i full användning. På internet används de 

för att leverera passande sökresultat och annonser, samt rekommendera filmer, produkter och låtar till 

användaren1. Detta görs genom att algoritmen tar fram resultat med hänsyn till viss information, och 

sedan förändras beroende på hur väl dessa resultat presterar. Prestationen kan mätas på olika sätt 

beroende på tillämpningsområde. Om man har en musiktjänst som rekommenderar låtar, så kan 

algoritmen ta hänsyn till exempelvis användarens lyssningsmönster, ålder, tid på dagen och nuvarande 

väder. Dessa variabler ger sedan ett antal låtförslag, via algoritmen. Prestationen kan mätas genom, 

exempelvis, hur länge användaren valde att lyssna på de rekommenderade låtarna. I detta fall skulle 

algoritmen utvecklas mot att rekommendera låtar som användare lyssnar länge på. 
 
Några andra användningsområden för maskininlärning är diagnostisering av sjukdomar, datorseende, 

taligenkänning, språkförståelse, robotlokomotion, kontrollsystem och Artificiell intelligens (AI) ibland 

annat spel. Algoritmerna bakom dessa områden varierar dock drastiskt. Artificiella neuronnätverk 

(ANN) används i många fall på grund av deras förmåga att hitta komplexa samband. De består av 

neuroner som kan kommunicera med varandra med elektriska signaler via kopplingar. Varje koppling 

går från en neuron (den presynaptiska cellen) till en annan (den postsynaptiska cellen), och har en viss 

styrka som påverkar amplituden av de signalimpulser som passerar igenom. När en neuron får signaler 

via kopplingar så bearbetas de och förmedlas vidare. Inlärning sker då sedan genom att variera till 

exempel styrkan på kopplingarna, eller variera hur varje neuron behandlar signalerna. Ju fler neuroner 

och kopplingar ett nätverk har vars värden inte bestäms av en människa, ju ”djupare” är det. Det finns 

många typer av neurala nätverk. Bland annat kan strukturen på nätverken kan variera. I den vanligaste 

typen är neuronerna organiserade i lager, och signalerna kan bara röra sig framåt. Detta är ett feed-

forward nätverk, i kontrast till återkopplande nätverk. Man kan ha olika typer av signaler i nätverken. 

Ofta är det bara ett enkelt nummervärde, men det finns undantag som i faltnings-neuronnätverk 

(CNN), som har visat sig vara väldigt bra på bland annat datorseende. Dessa nätverk är inspirerade av 

syncentrum i våra egna hjärnor (även om de flesta studier gjordes på katter), och har varit en stor 

utvecklingskälla inom maskininlärningen de senaste åren.  
 
En inspirationskälla till mitt projekt var publikationen ”Building Machines That Learn and Think Like 

People”2. Här diskuteras problemet om varför vi människor kan lära oss att utföra uppgifter som att 

spela ett spel på bara ett antal försök, samtidigt som det kan ta hundratals timmar för ett artificiellt 

neuronnätverk att komma i närheten av vår prestationsförmåga. Författarnas uppfattning är att det 

beror på grundläggande skillnaderna mellan de artificiella nätverk som används och utvecklas idag, 

och hur vi människor fungerar. De föreslår att vi människor utnyttjar den kunskap om världen vi redan 

har, och applicerar den i det nya sammanhanget. Detta låter oss göra antaganden som det artificiella 

nätverket måste testa sig fram till. Vanligtvis när man vill lära upp ett nätverk så börjar man nämligen 

med att det är helt otränat, utan någon erfarenhet alls. Genom att först låta ett neuronnätverk bygga 

upp intuitiva modeller om till exempel fysik och psykologi, så ger man det en grund att basera sin 

utveckling på när det får ett nytt problem att lösa, menar författarna. Detta kallas modell-baserad 

 
1 Adam Spector. Spotify Just Dove Deep Into Machine Learning Personalization. LiftIgniter. 28 Maj 2015. 
http://www.liftigniter.com/spotify-just-dove-deep-into-machine-learning-personalization/ (Hämtat 2016-10-
30). 
2 Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, Samuel J. Gershman. Building Machines That Learn 
and Think Like People. CBMM. 2016. arXiv:1604.00289v2 
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inlärning, för att nätverket bygger fram en lösning baserat på sin modell av problemmiljöns 

uppförande. 
 
Att bygga ett sorts nätverkssystem som utnyttjar dessa teorier om modellbaserad inlärning, och sedan 

träna upp det, tror jag skulle vara ett stort steg mot allmänt AI - där varje tränat nätverk (hjärna) 

används till mer än att bara lösa enstaka problem. Ett första steg skulle vara att skapa ett nätverk som 

automatiskt bygger upp en intuitiv modell av de värden man ger det. Med intuitivt menas att det inte 

finns någon resonemangsförmåga i nätverket gällande de samband det har lärt sig, vilket är en följd av 

att bara grundläggande inlärningsmekanismer kommer användas. Att få nätverket att styra mot att lösa 

problem efter hur väl jag som programmerare värderar dess prestation ingår ej i detta projekt, men är 

ett möjligt framtida forskningsområde. 
 

1.1. Syfte och Frågeställning 
Syftet med detta projekt är att ta reda på hur man kan bygga upp en datorsimulation av en biologisk 

hjärna, som sedan kan användas för maskininlärning. Frågeställningen är hur man kan gå till väga för 

att bygga detta system, samt om en biologisk modell fungerar för att bygga upp en intern intuitiv 

modell av sambanden mellan inputvärden. 

 

1.2. Materiel och metod  

1.2.1. Nätverksmodell 
Den mänskliga hjärnan är ett bra exempel på den sortens system som jag vill bygga. Man kan se den 

som en korrelationsmaskin. Den tar inputs i form av nervsignaler från våra sinnen, och hittar samband 

mellan dessa. Dessa samband tas fram genom relativt enkla regler som fungerar på cellnivå, och 

innebär att kopplingarna mellan neuroner, där det finns en korrelation i avfyrningsmönstren, blir 

starkare. Reglerna teoretiserades av den kanadensiska forskaren Donald Hebb 1949 i sin, inom 

neuropsykologin, mycket kända bok ”The Organization of Behaviour”3. ”Hebbianska” 

inlärningsmodeller är mycket vanliga inom artificiella neuronnätverk, även om deras implementering 

av nödvändighet varierar beroende på nätverkstyp. Den Hebbianska inlärningsmodellen påverkar bara 

styrkan av kopplingarna mellan neuronerna, och kan sammanfattas: Celler som avfyras tillsammans, 

sammankopplas. Om en nervcell vid upprepande tillfällen orsakar att en annan avfyras, så stärks 

kopplingen mellan dem. Detta kallas Long-term Potentiation (LTP).4 Motsatsen till detta kallas Long-

term Depression (LTD). Denna förmåga att förändra styrkan i kopplingarna kallas synaptisk 

plasticitet.  

 

Det finns två populära sätt att representera biologiska neuroner i nätverksmodeller. Man kan till 

exempel representera nervcellers avfyrningsfrekvens, en s.k. rate-modell. Denna modell är robust för 

inlärning, lätt att implementera, och är ofta biologisk representativ, men den klarar inte av att 

representera alla sorters informationsöverföring. Neural kodning är hur information kan representeras 

och förflyttas i hjärnan. En rate-modell låter information bara representeras i hur aktiva neuronerna är. 

Eftersom syftet med detta projekt är att skapa en relativt verklighetstrogen biologisk modell, så är det 

nödvändigt att tillåta temporal-kodning. Detta genom att istället representeras den elektriska 

spänningspotentialen, i både neuronerna och kopplingarna (som hädanefter hänvisas till som 

synapser). Över tid kan spänningen förändras. Om spänningen överstiger en viss tröskelpotential, så 

orsakar det en nervimpuls, som förmedlas vidare till synapser och därmed andra neuroner. Detta gör 

modellen till ett impuls-baserat nätverk (SNN). Denna temporal-kodning innebär att en enstaka neuron 

kan överföra information via specifika avfyrningssekvenser, vilket i praktiken innebär att den får den 

tekniska möjligheten att kommunicera med till exempel morsekod. Att använda ett SNN möjliggör att 

även använda en mer realistisk modell för den synaptiska plasticiteten. Impuls-tidsbaserad-plasticitet 

 
3 Hebb O. Donald. The Organization of Behaviour. New York: Wiley & Sons. 1949. 
4 Hebb's Three Postulates: from Brain to Soma. [online video]. 2015. 
https://www.youtube.com/watch?v=SIp_CTEfiR4 (Hämtat 2016-10-30) 
 

https://www.youtube.com/watch?v=SIp_CTEfiR4
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(STDP) baserar förändringen i synapsens styrka på den relativa tiden mellan nervimpulser. Denna 

modell är i full enlighet med Hebbs regler, och har visat sig representera den biologiska verkligheten 

ganska väl.5 

 

Som tidigare nämnt så kan neuronnätverk bestå av olika sorters strukturer. I detta projekt placeras 

neuronerna ut spatialt i 3D utrymme, och skapar kopplingar till alla de andra närmaste neuronerna. 

Koordinaterna är slumpmässigt genererade decimaltal, som är jämt fördelade inom en sfär. Detta 

system innebär att hjärnan har en återkopplande neuronstruktur. Här uppstår problemet med positiva 

återkopplingsloopar, då signaler i hjärnan kan livnära sig själva obegränsat länge. Detta kan ske i även 

verkligheten under vissa genetiska förutsättningar, och är känt som epilepsi. Ett av hjärnans sätt att 

motverka detta är genom att placera ut inhibitoriska synapser, som hämmar aktivitet i neuroner. Denna 

sorts synapser är oftast mer lokaliserade, har kortare kopplingar än excitatoriska synapser (som främjar 

aktivitet i neuroner). De är även ovanligare, då endast 15 % av neuronerna i hjärnbalken har en 

inhibitorisk roll. Deras roll i faktisk inlärning och informationsbearbetning är omstridd inom 

forskarvärlden, men det står klart att de har en viktig funktion inom att motverka epileptiska anfall.6 

 

I och med att hjärnan inte har någon mekanism som ”motiverar” den att sträva efter vissa mål, så är 

det poänglöst att bygga ett test som mäter hjärnans prestation. Skulle detta vara möjligt så hade man 

kunnat träna hjärnan, och sedan belönat förutsägningsförmågan, vilket man skulle extrahera som 

nervsignaler i vissa områden. Denna lösning hade dock haft nackdelen att man inte skulle veta hur 

mycket av den förutsägningsförmåga som uppstår som på grund av synapsernas naturliga (STDP) 

tendens att hitta samband, och hur mycket som bara är en produkt av belöningssystemet. Av denna 

anledning väljer jag därför att mäta hjärnans inlärning genom direkt analys av nätverket. En 

renderingsmotor är här mycket hjälpsamt då det blir möjligt att snabbt och enkelt göra en intuitiv 

bedömning av hjärnans beteende och förmåga, vilket är fördelaktigt under utvecklingen och designen 

av simulationssystemet. Genom andra verktyg går det sedan att göra en mer objektiv och vetenskaplig 

bedömning av systemet. Till exempel går det att observera vilka områden är aktiva när specifika inputs 

ges. 

 

1.2.2. Programmering 
Programmeringsspråket som väljs sätter grunderna för strukturen på programmet, hur utförlig koden 

behöver vara, projektets arbetsflöde, var programmet kan köras, samt hur snabbt koden kör. Eftersom 

att koden i detta sammanhang skulle användas i en simulation som med tid utvecklas mot ett visst 

tillstånd, som sedan analyseras, så är det fördelaktigt att detta tillstånd nås så snabbt som möjligt i 

förhållande till realtid. Därför krävdes ett snabbt språk, vilket oftast medför ett lågnivåspråk, där 

programmeraren har stor makt och ansvar att definiera algoritmerna i detalj genom att jobba nära 

hårdvaran. Bäst lämpat för detta är C++, som även har fördelen att det fungerar väl i 3D miljöer. C++ 

är en vidareutveckling på C språket, och har fler inbyggda funktioner samtidigt som det ger mycket 

kontroll. Språket har stöd för objektorienterad programmering, vilket gör det passande i större 

simulationsprojekt, där man har många olika sorters objekt som alla har delat beteende.  
 

Eftersom att C++ är ett språk som behövs kompileras före att det körs, så krävs att man väljer en 

kompilator. Kompilatorns roll är att översätta programmerarens kod i C++ till den maskinkod som 

körs på processorn. I detta projekt används MingW-kompilatorn på Windows. Detta för att 

kompilatorn är väl integrerad med programmeringsmiljön CodeBlocks. Vid installation av 

CodeBlocks kan väljas att även installera MingW. För att hantera 3D grafiken i renderaren så krävs ett 

API (applikationsprogrammeringsgränssnitt) som dels kan tala med hårdvaran, och dels kan fungera 

på ett brett spektrum av mjukvarumiljöer. Här väljer jag OpenGL, vilket är en sorts standard som 

hårdvarutillverkare har implementerat i sina enheter. Denna standard gör det möjligt för samma kod att 

 
5 H. Markram, W. Gerstner, P. J. Sjöström. Spike-Timing-Dependent Plasticity: A Comprehensive Overview. 
Front Synaptic Neurosci. 2012. doi: 10.3389/fnsyn.2012.00002 
6 CCNLab, CCNBook/Networks, https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Networks, 31 
Mars 2015, (Hämtad 2016-11-20) 

https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Networks
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köra och fungera (approximativt) lika på olika system. OpenGL ansvar dock endast för att rendera 

pixlar på en skärmyta, det krävs ett annat API för att prata med operativsystemet för att kunna skapa 

ett fönster. Här så använder jag GLFW, som är plattformsoberoende (fungerar på flera 

operativsystem), och kan hantera och vidarebefordra användarinmatning till resten av programmet.  

2. Undersökning och resultat 
2.1. Bygga programmeringsmiljö 

För att hantera alla filer under projektets gång så användes GitHub (projektlänk finns under bilagor). 

Detta gör det möjlig att ha kontroll över förändringshistoriken, dela min kod, och ha uppdaterade 

säkerhetskopior på en server. Det krävdes även ett antal externa referenser, och det krävdes därför 

extra arbete för att konfigurera programmeringsmiljön. Efter att CodeBlocks och MingW hade 

installerats så laddade jag hem och installerade dessa externa referenser, vilka är s.k. bibliotek som 

innehåller kod som andra projekt kan importera och använda. 
Tabell 1 Visar de namnet av bibliotek som används i koden, samt vilken funktion de spelar. 

Bibliotek Användning 

GLFW (& OpenGL) Skapa fönster och rendera 3D grafik. 

GLM Förvara och bearbeta matriser och vektorer 

GLEW Hantering av OpenGL tillägg 

PicoPNG För att ladda in bilder från .png format 

dear imgui Programmering av användargränssnitt 

Boost Stable vector -behållare 

TinyExpr Tolka och beräkna aritmetiska formler 

MingW-mappen, vars plats valdes under installationen av CodeBlocks (standarplats är i CodeBlocks-

mappen) har en undermapp med namn "bin". Denna mapp bör läggas till i miljövariabeln PATH, då den 

innehåller flera program som behöver anropas under installation av biblioteken. Installationen sker 

genom att flytta mappen med källfilerna (.h, .cpp, eller .hpp) till under "includes" i MingW mappen. 

Installationen av dessa bibliotek varierar och sker på följande vis: 

1. PicoPNG, dear imgui, TinyExpr - Redan inbäddade i projektfilerna och följer ner när Git-projektet 

laddas ner.  

2. GLM, Boost - "glm", samt "boost" -mapparna läggs som undermappar i "includes"-mappen i 

MingW-mappen. Detta tillåter kompilatorn att hitta och använda filerna när programmet skapas. 

3. GLFW – Laddas ner förkompilerat för Windows 32 bitars. I den nerladdade ZIP-filen finns en mapp 

med namn ”include” som slås ihop med den i MingW. De förkompilerade filerna finns under ”lib-

mingw” i ZIP-filen. Här ska de två .a-filerna läggas till under ”lib” i MingW. Den kvarvarande 

.DLL-filen ska läggas på ett ställe känt för projektets .exe-fil efter kompilering, till exempel i samma 

mapp som den, eller i MingWs ”bin”-mapp som lades till i PATH-variabeln tidigare. 

4. GLEW – Finns i förkomplilerade versioner, men dessa fungerar ej för MingW-32, vilket betyder att 

kompileringen behövs göras manuellt. Först bör källfilerna laddas ner (finns på hemsidan), och 

extraheras till sin egen mapp. Sedan kan kommandotolken öppnas i mappen (Ctrl + högerklick), och 

följande kommandon köras: 

1. gcc -DGLEW_NO_GLU -O2 -Wall -W -Iinclude -DGLEW_BUILD -o src/glew.o -c 

src/glew.c 

2. gcc –nostdlib -shared -Wl,-soname,libglew32.dll -Wl,--out-implib,lib/libglew32.dll.a -o 

lib/glew32.dll src/glew.o -L/mingw/lib -lglu32 -lopengl32 -lgdi32 -luser32 -lkernel32 

3. ar cr lib/libglew32.a src/glew.o 

Detta skapar tre filer i GLEWs ”lib”-mapp med två .a- och en .DLL-fil som kan installeras på samma 

sätt som de i GLFW. Det finns även en ”includes”-mapp som bör slås ihop med den i MingW. 

 

2.2. Struktur och grundläggande system 
Strukturen på programmet är utformad på sådant sätt att simulationsobjektet (själva hjärnan) kan vara 

självständigt från renderaren, som bara ges minnesadressen till simulationen. Renderaren kan på så 

sätt extrahera information som sedan bearbetas om till pixelvärden som sedan skickas till skärmen. 
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Renderaren kan via denna minnesadress även ändra på simulationen. Detta ger användaren möjlighet 

att förändra till exempel simulationshastighet under körtid. Simulationsobjektet förvarar olika typer av 

simulatorer. Gemensamt för dessa simulatorer är att de alla känner till simulationsobjektet, och att de 

har en körfunktion som uppdaterar objektet i förhållande till simulationens tidsvariabel. Avfyrar-

simulatorn ser till att avfyra vissa neuroner efter en viss frekvens som definieras i main-funktionen. 

Det är detta system som används för att ge hjärnan de input-värden som sedan bearbetas.  

 
Figur 1 Visar de funktionella förhållandena mellan de olika klasserna (ovaler), användargränssnitt (romber), och main-

funktionen (rektangel). Streckad linje visar att informationsutbyte sker. Heldragna pilar mellan klasser visar att klassen till 

höger äger klassen till vänster. Klasserna inom den streckade rektangeln ärver alla av simulator-klassen. 

Simulationsobjektet äger en simulationslista vars uppgift det är att köra alla simulatorer vid rätt 

tillfälle i rätt ordning. Varje simulator ansvarar för att schemalägga tillfällen att köras i framtiden i 

denna globala lista. Varje tillfälle sorteras automatiskt så att det som ligger närmast i tid ligger först. 

Efter att ett tillfälle har passerat och simulatorn har körts så raderas elementet ur listan. Detta system 

innebär i praktiken att bara det som är nödvändigt att simulera behöver simuleras, och så att 

simulationshastigheten kan variera utan att simulationens beteende förändras. 

 
Figur 2 Visar hur simulationslistan anropar körfunktionen av simulatorn som det tillfälle som ligger närmast i tid (längst till 

vänster) länkar till. Simulatorn kan då komma att schemalägga senare simulationstillfällen i framtiden, som då sorteras in 

beroende på tid i simulationslistan. Efter att ett simulationstillfälle har fått körfunktionen anropat så raderas det, och 

nästkommande tillfälle blir då först i listan. 

Genom att utveckla både simulationen och renderaren parallellt så blir det möjligt att enklare reda ut 

buggar, och förstå hur systemet beter sig under olika förhållanden. I C++ är det vanligt att klasser och 

globala variabler först deklareras i s.k. header-filer (.h), för att sedan definieras i själva kod-filerna 

(.cpp). Detta bidrar till bättre översikt av projektet, och gör det enklare att använda klasserna i andra 

sammanhang utan att komma i kontakt med den interna koden som klassen själv använder. I detta 

projekt finns det främst två viktiga header-filer. ”NeuCor.h” deklarerar följande klasser: 
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// Själva simulationen av hjärnan 
class NeuCor {  
 

// En schemaläggning med planerad tidpunkt och minnesadress till simulatorn 
struct simulation { 
 

// Abstrakt klass som ligger till grund till allting som simuleras 
class simulator {  
 

// Avfyrar neuronerna efter viss given frekvens, och är en typ av simulator 
struct InputFirer: public simulator {  
 

// Neuron-klassen är en typ av simulator 
class Neuron: public simulator {  
 

// Synaps-klassen är en typ av simulator 
class Synapse: public simulator {  
 

// Enkel datatyp som förvarar 3D koordinater som float-värden (decimaltal) 
struct coord3 {   

Kodavsnitt 1 Visar vilka klasser och strukturer NeuCor.h deklarerar. 

”NeuCor_Renderer.h” deklarerar: 
// Renderaren, som skapar ett fönster och ritar ut en visualisering av hjärnan i 
3D 
class NeuCor_Renderer {   

Kodavsnitt 2 Visar vilka klasser och strukturer NeuCor_Renderer.h deklarerar. 

Genom att dela upp simulationsklasserna och renderaren för sig så blir det möjlig att bara inkludera 

simulationen i sitt projekt, om det bara är den som är nödvändig. Detta innebär att man i så fall inte 

behöver installera alla bibliotek som renderaren behöver. 

 

2.3. Implementering 
När man i C++ skapar ett objekt av en viss klass så anropas en konstruktor, en sort initieringsfunktion 

vars uppgift det är att konstruera objektet. De i header-filen definierade variablerna finns redan i det 

nya objektet, men dom har inte nödvändigtvis några tilldelade värden. I mitt projekt innebär det att 

hjärnan är tom när den först skapas, och att man i konstuktorn (eller senare) behöver placera ut 

neuroner och synapser. Detta gör jag genom att ge hjärnans (NeuCor-klassens) konstruktor ett heltal 

som in-parameter, vilket anger hur många neuroner (med delvis slumpmässiga egenskaper) som 

initialt ska placeras ut. Detta görs i två steg: först skapas och förvaras alla neuronerna, sedan skapas 

kopplingarna (synapserna).  Kopplingarna skapas genom att varje neuron mäter avståndet till de andra 

neuronerna, och om detta avstånd är mindre än 1 längdenhet, samt kopplingen inte redan finns, så 

skapas en synaps som går från den presynaptiska neuronen till den postsynaptiska neuronen. Denna 

synaps förvaras i en behållare inuti presynaptiska neuronen. Denna metod innebär att det alltid 

kommer finnas två kopplingar åt vardera riktning när två neuroner är tillräckligt nära varandra. 

Algoritmen är dock ineffektiv då den måste jämföra avstånden till varje neuron för varje neuron, vilket 

skapar en exponentiell tillväxt i antalet beräkningar som måste genomföras i och med att neuronantalet 

ökar (en s.k. O(n2) – algoritm inom Big O notation). Detta problem kan i framtiden lösas genom att 

placera koordinaterna av varje neuron i ett kd-träd, en binärt partitionerande behållare som minskar 

antalet nödvändiga jämförelser linjärt med antalet neuroner. Detta ligger dock utanför ramarna av detta 

projekt. När neuron- och synapsobjekten skapas så anropas även deras konstruktorer, som i båda fall 

ansvarar för att definiera objektens egenskaper, så som: vilopotential, kopplingsstyrka, form på 

impulsspänning över tid, etc. Synaps-konsturkorn lägger även en identifierare av sig själv i en särskild 

behållare i den postsynaptiska neuronen, vilket gör så att denna neuron vet vilka input synapser den 

har, även om den inte äger dem.  
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Neuroner kan skapas indirekt i hjärnan utanför konstuktorn genom att anropa en av hjärnobjektets 

funktioner: 

 
// Initierar hjärnobjekt med 0 neuroner. 
NeuCor brain(0); 
 
// Skapar neuron med koordinaterna: (-2.0, 1.25, 0.0) 
brain.createNeuron({-2.0, 1.25, 0.0}); 
 
// Skapar neuron med koordinaterna: (0.0, 1.0, 0.2)          
brain.createNeuron({0.0, 1.0, 0.2});   
   
// Skapar neuron med koordinaterna: (0.0, 0.0, 5.0)          
brain.createNeuron({0.0, 0.0, 5.0});  
 
// Skapar neuron med slumpmässiga koordinater 
brain.createNeuron({NAN, NAN, NAN}); 
 
// Skapar kopplingar mellan alla närliggande neuroner 
brain.makeConnections();   
Kodavsnitt 3 Visar hur det går att skapa neuroner i main-funktionen genom hjärnobjektet. 

 

När NAN (not-a-number) anges så skapas koordinaterna istället slumpmässigt, jämt fördelade inom en 

sfär. Detta görs genom att 3 slumpmässiga reella tal (x, y, z) genereras inom ett visst omfång. Om 

dessa tal, när de tolkas som 3D-koordinater, befinner längre än ett visst avstånd från origo, så förkastas 

talen, och tre nya genereras, annars så används talen som neuronens koordinater. Denna algoritm är 

enkel att implementera, men relativt ineffektiv då den förkastar en del av koordinaterna. Sannolikheten 

att koordinaterna inte behöver förkastas kan beräknas genom: 

𝑉𝑜𝑙𝑦𝑚𝑆𝑓ä𝑟
𝑉𝑜𝑙𝑦𝑚𝑘𝑢𝑏

⁄ =  

4

3
𝜋𝑟3

(2𝑟)3
⁄ =

𝜋

6
 ≈ 52%  

Där r är det maximalt tillåtna avståndet från origo.  

 

Efter detta är hjärnan initierad, och redo att simuleras. Det är här nödvändigt att skiva koden till de tre 

simulatorerna, samt hjärnobjektet. I hjärnans globala körfunktion implementeras bakgrundsaktivitet 

genom att varje neuron får en 1/600 per ms chans att avfyras spontant. Neuronens körfunktion 

anropas regelbundet av bland annat hjärnobjektet (genom simulationslistan). Denna funktion 

uppdaterar neuronens tillstånd beroende på hur mycket tid som har passerat sedan den senast 

anropades.  
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void Neuron::run(){ 
    // Hittar nuvarande tid och tidsskillnad 
    float currentT = parentNet->getTime(); 
    float deltaT = currentT - lastRan; 
    lastRan = currentT; 
 
    // Går ur funktion om ingen tid har passerat (för att undvika oändliga loopar) 
    if (deltaT == 0) return; 
 
    // Integrerar potentialen av aktiva insynapser 
    charge_insynapses(deltaT, currentT); 
 
    // Växer / avtar neuronens potential exponentiellt mot basnivån  
    charge_passive(deltaT, currentT); 
 
    // Kontrollerar om neuronens potential är över tröskeln,  
    // och avfyrar i sådana fall neuronen 
    charge_thresholdCheck(deltaT, currentT); 
 
    // Styr potentialen efter funktion om neuronen håller på att avfyra 
    AP(currentT); 
 
    // Uppdaterar aktivitets-variabeln 
    setActivity(firings/(((float) currentT-activityStartTime)/10.0)); 
} 
 

 
Kodavsnitt 4 Visar utseendet av neuron-klassens kör-funktion.  

Aktivitets-variabeln, som håller reda på avfyrningsfrekvens, beräknas även. De fyra andra 

funktionerna som anropas reglerar neuronens nuvarande elektriska potential. Medlemsfunktionen 

(d.v.s. en funktion som endast tillhör klassen) ”charge_insynapses” är neuronens förbindelse med sina 

in-synapser. Denna funktion ökar neuronpotentialen med: ∑ (𝑓𝑖
𝑎
𝑖=0 ∗ ∆𝑡 ∗ 𝑔(∆𝑡)) där a är antalet aktiva 

synapser, ∆t är tid sedan senast uppdatering, fi är impulsstyrkan från en specifik synaps, och 𝑔(∆𝑡) =
0.9943 ∗ 𝑒0.3702∗∆𝑡 är en funktion framtagen genom regression som gör så att beteendet är desamma 

oavsett ∆𝑡. En synaps räkans som aktiv i 2 ms från början av en impuls. Denna funktion är en kraftigt 

förenklad modell av hur dendriter tar upp neurotransmittorer i det synaptiska gapet, och hur dessa 

signaler sedan summeras i neuronen. Istället för att integrera en impulsspänningens förändring över tid 

så integreras endast ett konstant värde över tid. Detta förenklar de matematiska beräkningarna som 

datorn behöver utföra och gör hjärnans beteende mindre invecklat. 

 

Efter att in-synapsernas impulser har integrerats och summerats så anropas ”charge_passive”, vars 

uppgift det är att få neuronens potential att gå mot sin vilopotential (b), vilket är -70 mV, över tid. 

Detta gör på exponentiellt vis genom funktionen 𝑝𝑢𝑝𝑝𝑑𝑎𝑡𝑒𝑟𝑎𝑑 = (𝑝𝑛𝑢𝑣𝑎𝑟𝑎𝑛𝑑𝑒 − 𝑏) ∗ 𝑐∆𝑡 + 𝑏, där c är 

förändring per ms, vilket i simulationen är 0,5. 
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Figur 3 Exemplet visar att potentialen (p) alltid går mot vilopotential över tid sedan senast körning (Δt) oavsett startvärde. 

Nästa funktion, ”charge_thresholdCheck” kontrollerar om huruvida neuronens potential är över en viss 

tröskelpotential (-55mV). Om det är fallet och neuronen eller synapsen inte redan håller på att avfyras, 

så anropas neuronens avfyrningsfunktion. Denna funktion utför ett antal uppgifter. Den ökar 

neuronens avfyrningsräknare (som används för att avgöra aktiviteten) med 1, sätter spår-variabeln till 

1, och sätter neuronens variabel för senaste avfyrning till den nuvarande tiden. Utöver detta så avfyrar 

den STDP-inlärningsalgoritmen i alla in synapser, samt anropar alla ut-synapsers avfyrningsfunktion 

med impulsstyrkan som parameter.  

 

Den sista funktionen som ändrar potentialen i neuron-klassen är ”AP”. Denna funktion ger formen på 

neuronens spänning under en nervimpuls. För att förstå anledningen till denna form, så är det 

nödvändigt att förstå den underliggande biokemiska processen bakom. Med begreppet potential menas 

i detta sammanhang skillnaden på den elektriska spänningen inuti och utanför en neurons 

cellmembran. Spänning uppstår på grund av olika jonkoncentrationer, vilket är ett resultat av de 

natrium-kaliumpumpar finns i cellmembranet. Dessa proteinpumpar jobbar för att bibehålla 

natriumjoner (Na+) utanför cellen och kaliumjoner (K+) inuti cellen. Utan dessa skulle 

jonkoncentrationerna utanför och inuti cellen bli desamma på grund av att membranet är super 

permeabelt för kaliumjoner och delvis permeabelt för natriumjoner. Det är detta som får 

membranpotentialen att gå mot vilopotential (-70 mV). En nervimpuls är en hastig och skarp 

förändring i jonkoncentration, och därmed också den elektriska potentialen. Denna förändring uppstår 

när spänningsstyrda jonkanaler, som även de finns i membranet, öppnar och stänger flödet av joner 

beroende på den aktuella spänningen i membranet. När excitatoriska in-synapser aktiveras, så flödar 

det in positivt laddade joner i neuronen, vilket ökar den elektriska spänningen. Om den elektriska 

spänningen överstiger en viss tröskelpotential (-55 mV) så öppnas de spänningsstyrda 

natriumkanalerna som normalt sätt är stängda, vilket gör så att det flödar in natriumjoner in i cellen. 

Detta får membranpotentialen att stiga (till ca +30 mV) och kallas depolarisering. Vid detta tillfälle 

börjar natriumkanalerna att stänga, och natriumjonerna börjar pumpas ut ur cellen igen på grund av 

natriumpumparna. Samtidigt så börjar de annars stängda spänningsstyrda kaliumkanalerna öppnas, 

vilket orsakar att kaliumkoncentrationen inuti cellen minskar, och därmed också cellens 

membranpotential. Detta kallas repolarisering. När vilopotential nås, så stängs inte dessa 

kaliumpumpar omedelbart, utan det fortsätter läcka kaliumjoner ur cellen. Detta gör att 

membranpotentialen temporärt understiger vilopotentialen, vilket kallas hyperpolarisering. 
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Kaliumpumparna återställer sedan kaliumjonskoncentrationen, och neuronen har då helt återställda 

jonkoncentrationer samt en återställt membranpotential.7 

 

Detta biologiska uppförande modelleras i AP-funktionerna, men kommer här representeras med 

matematisk notering. Värdet som funktionen V(t) ger (där t är tiden i ms sedan senast avfyrning 

påbörjades), blir neuronens potential om en avfyrning är pågående. Genom att simulera den relativa 

mängden natrium- och kaliumjoner över tid, och sedan summera dessa två mängder, så går det att 

avgöra hur neuronens potential förändras över tid. Min bedömning har här varit att använda 

Gaussfunktion för att modellera de relativa jonmängderna under en nervimpuls.  

𝑁𝑎+(𝑡) = 𝑎1𝑒
−

(𝑡−𝑑1)2

2𝑤1
2

 

𝐾+(𝑡) = 𝑎2𝑒
−

(𝑡−𝑑2)2

2𝑤2
2

 

Även här är t tid sedan senast avfyrning påbörjades. Jag har valt att i simulationen använda värdena: 

𝑎1 = 1; 𝑑1 = 1;  𝑤1 = 0.3; 𝑎2 = −0.2; 𝑑2 = 2.16; 𝑤2 = 0.6 

Observera att värdet a2 är negativt, då den relativa mängden K+ innanför cellmembranet först minskar, 

och sedan ökar.  
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Figur 4 Visar hur den relativa mängden av Na+- och K+-joner förändras över tid sedan början av impuls (t) i förhållande till 

varandra.   

Genom att utgå från dessa två funktioner går det att konstruera V(t): 

𝑉(𝑡) = 𝑓 ∗ (𝑁𝑎+(𝑡) + 𝐾+(𝑡)) + 𝑏 + (𝑇 − 𝑏) ∗ max (1 − 𝑡;  0)  

Här är b vilopotential (-70 mV), T tröskelpotentialen (-55 mV), och f är 100. Den sista termen 
(𝑇 − 𝑏) ∗ max (1 − 𝑡;  0) adderas för att åstadkomma att impulspotentialen börjar på 

tröskelpotentialen istället för vilopotentialen. Funktionen max returnerar det högsta värdet av de 

invariabler som anges. Uppmärksamma att funktionen V(t) bara gäller i 2 ms från början på avfyrning. 

Detta på grund av den bedömning jag har gjort att en impuls räknas som pågående i 2 ms (med dessa 

valda konstanta värden). Efter denna tid är det möjligt för neuronen att åter igen avfyras. 

 
7 Khanacademy, Neuron action potentials: The creation of a brain signal, https://www.khanacademy.org/test-
prep/mcat/organ-systems/neuron-membrane-potentials/a/neuron-action-potentials-the-creation-of-a-brain-
signal (Hämtat 2017-02-28) 

https://www.khanacademy.org/test-prep/mcat/organ-systems/neuron-membrane-potentials/a/neuron-action-potentials-the-creation-of-a-brain-signal
https://www.khanacademy.org/test-prep/mcat/organ-systems/neuron-membrane-potentials/a/neuron-action-potentials-the-creation-of-a-brain-signal
https://www.khanacademy.org/test-prep/mcat/organ-systems/neuron-membrane-potentials/a/neuron-action-potentials-the-creation-of-a-brain-signal
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Figur 5 Visar hur potentialen (p) förändras över tid sedan början av impuls (t) när funktionen V(t) används.  

När en neuron avfyrar en synaps, vilket sker i början av en impuls, så räknar synapsen i förtid ut hur 

lång tid det kommer att ta för impulsen att nå fram till målneuronen genom att multiplicera synapsens 

signalutbredningshastighet (2 längdenheter per ms) med synapsens längd. Vid denna framtida tidpunkt 

schemaläggs ett anrop av synapsens kör-funktion. När kör-funktionen anropas sker följande: det 

schemaläggs en körning av målneuronen vid impulsens sluttid (efter 2 ms), synapsen lagrar nuvarande 

tid i medlemsvariabeln ”lastSpikeArrival”, och plasticitetsfunktionen ”synapticPlasticity” anropas. 

Denna funktion förändrar synapsens styrka, vilket är en faktor när impulsstyrkan beräknas. Med andra 

ord har en stark synaps en större påverkan på målneuronen. En excitatorisk synaps har enklare att 

förmedla en impuls vidare, och en stark inhibitorisk synaps (med ett negativt styrkevärde), har enklare 

att förhindra att målneuronen avfyras. Plasticitetsfunktionen (som implementerar STDP-inlärning) 

anropas, som tidigare omnämnt, vid två tillfällen: när målneuronen avfyras och när en signal når fram 

till målneuronen i synapsen. Funktionen utgår från att det lämnas ett spår direkt efter en avfyrning i 

alla neuroner respektive synapser. Detta spår får värdet 1 vid avfyrning, och avtar sedan exponentiellt 

över tid (65 % per ms i neuroner, 75 % avtagande per ms i synapser). Beräkningen av värdet av de två 

spårvariablerna gör genom: 𝑆𝑛 = 𝑎𝑛
𝑡𝑛𝑢−𝑡𝑛, samt 𝑆𝑠 = 𝑎𝑠

𝑡𝑛𝑢−𝑡𝑠, där S är spår-variabler, a är avtagande 

per ms (an = 0.65, as = 0.75), tnu är nuvarande tid, ts är tid när en signal senast nådde fram till 

målneuronen i synapsen (”lastSpikeArrival”), och tn är tid vid början av senast impuls i målneuron. 

Det är viktigt att spår-variablerna uppdateras efter att plasticitetsfunktionen har anropats för att 

inlärningen ska fungera som avsett. Detta garanteras genom att låta variabeln bli 0.0 och den var exakt 

lika med 1.0. När spårvariablerna är beräknade används de för att beräkna den resulterande skillnaden 

i styrka av synapsen genom ∆𝑤 = 𝑓𝑔 ∗ (𝑓𝑠 ∗ 𝑆𝑠 − 𝑓𝑛 ∗ 𝑆𝑛), där fg är den globala inlärningsfaktorn 

(med standardvärde 1.0) som används för att kontrollera hur hastigt synapsstyrkorna förändras globalt. 

Variablerna fs (standardvärde 0.13) och fn (standardvärde 0.30) ändrar plasticitetsfunktionens preferens 

för negativa jämfört med positiva ∆𝑤. Efter att skillnaden i synapsstyrka har applicerats så används 

värde-clamp för att hålla styrkan inom ett visst omfång (0.0 till 1.0 för excitatoriska synapser, -1.0 till 

0.0 för inhibitoriska). 

 

2.4. Användning 

2.4.1. Bibliotek 
En användare av biblioteket importerar min kod i dennas projekt, och kan på så sätt använda min 

simulationsmodell utan att själv behöva förstå hur simulationen fungerar i detalj. En förståelse av de 

externa gränssnitt jag har designat är istället tillräckligt. Koden kan klonas med GitHub  

 



 
 

 
12 

 

(länk till projekt finns under Bilaga 1). Kloningen kan ske genom standard konsolbaserad GitHub, 

även om jag rekommenderar att använda GitHub Desktop då det har ett grafiskt användargränssnitt 

som är enklare att använda. Efter detta krävs att användaren går igenom den process att installera 

nödvändiga bibliotek, som anges i avsnitt 2.1 Bygga programmeringsmiljö. För att hantera 

simulationen krävs endast att användaren hanterar objekt av klassen ”NeuCor”. De publika funktioner 

och variabler som finns i denna klass är dokumenterade i header-filen på engelska, och på svenska 

nedan.  
 
NeuCor(int n_neurons); 
// Konstruerar klassen. n_neurons parameter är antal neuroner som skapas initialt 
 
void run(); 
// Kör hela simulationen 
 
float runSpeed; 
// Hur mycket tid (i ms) som simuleras när run() anropas (standardvärde 1.0) 
 
bool runAll; 
// Sant falskt värde om huruvida alla neuroner bör simuleras (standardvärde 
falskt) 
 
float getTime() const; 
// Returnerar hur mycket simulationstid (i ms) som har förflutit 
 
float learningRate;  
// Är den globala inlärningsfaktorn fg (standardvärde 0.6) 
 
float presynapticTraceDecay, postsynapticTraceDecay;  
// Avtagande per ms av alla synapsers respektive neuroners spårvariabler 
(standardvärde 0.5, samt 0.9) 
 
void setInputRateArray(float inputs[], unsigned inputCount, coord3 
inputPositions[] = {NULL}, float inputRadius[] = {NULL})); 
// Parametern ”inputs”  är en array av float-värden som anger (i Hz) 
avfyrningsfrekvensen av de avfyrare som finns i hjärnan. ”inputCount” anger 
antalet element i denna array. Eftersom att det är minnesadressen till array som 
förvaras, så uppdateras avfyrarna automatiskt efter de värden dom finns på 
minnesadressen när run() anropas. Parametrarna ”inputPositions” och ”inputRadius” 
är ej nödvändigt, men definierar positionerna och radien på avfyrarna i hjärnan. 
 
void addInputOffset(unsigned inputID, float t); 
// Förskjuter given avfyrares (inputID) nästa avfyrning med given tid t (ms). Går 
även att använda negativa tidsvärden. 
 
 
void createNeuron(coord3 position);  
// Skapas positioner vid givna koordinater. Om NAN anges som koordinatvärden, blir 
positionen slumpmässig. 
 
void createSynapse(std::size_t toID, std::size_t fromID, float weight); 
// Skapar synaps mellan från en neuron (”toID”) till en annan (”fromID”) med given 
styrka (”weight”). 
 
void makeConnections(); 
// Skapar två kopplingar mellan alla neuroner mindre än 1 längdenhet från 
varandra.  

 
 

Kodavsnitt 5 Visar användning och funktion av de publika medlemmarna i ”NeuCor”-klassen.  
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Renderaren har fler publika medlemsvariabler och funktioner. Av dessa kommer dock endast de 

nödvändiga förklaras då flera av dessa antingen är självförklarande, eller är till för att genom extern 

kod kunna ändra status på sådana variabler som annars går att ändra på inom användargränssnittet. 

Dokumentation för dessa essentiella medlemmar av klassen ”NeuCor_Renderer” står nedan. Ett 

exempelprogram som demonstrerar hur ”NeuCor” och ”NeuCor_Renderer” kan användas tillsammans 

finns i Bilaga 3. 
NeuCor_Renderer(NeuCor* _brain); 
// Konsturerar renderare. “_brain” parameter är en pointer till hjärnan. 
 
float getDeltaTime(); 
// Returnerar verklig tid som har passerat sedan körning av updateView() 
 

 
bool runBrainOnUpdate;  
// Om renderaren bör köra hjärnan i när updateView() (standardvärde falskt) 
 
void updateView(); 
// Renderar hjärnan och visar den i fönstret 
 
void pollWindow(); 
// Ber Windows ange de handlingar som användaren har utfört. Denna funktion är 
nödvändig för att Windows inte ska registrera fönstret som fruset. 
 

 
Kodavsnitt 6 Visar användning och funktion av publika medlemmar i ”NeuCor_Renderer”-klassen. Bygga 

programmeringsmiljö 

2.4.2. Grafiskt gränssnitt 
En förkompilerad version av koden finns att ladda ner under Bilaga 2. Det grafiska gränssnittet består 

av dels renderingen av hjärnan, och dels de paneler som biblioteket ImGui används för att skapa. Med 

detta gränssnitt går det att avläsa information om hjärnan för att förstå dens beteende, och till viss del 

även att ändra hur hjärnan körs. När renderaren först öppnar fönstret (se Figur 6) går det att använda 

och flytta runt menyerna. Genom att klicka på rubriken ”Controls” så öppnas en lista som detaljerar 

hur man kan använda tangentbord och mus för att manipulera renderingen. Mätning kommer bland 

annat göras med de tre grafer som finns under menyn ”Statistics” (se Figur 7, Figur 8, Figur 9), 

neuron-potentialsgrafen (som visas när en neuron markeras och dess fönster öppnas, se Figur 10), och 

synaps-styregrafen (som finns under synapsmenyer i neuron-fönstret, se Figur 11). På grund av 

begränsningar med ImGui har det ej varit möjligt gradera dessa grafer.  
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Figur 6 Visar ett exempel på hur rendering av paneler (vänster) samt hjärnan ser ut på skärmen. Synapserna visas som 

streck, vita ifyllda ringar är neuroner, icke ifyllda ringar är avfyrare. 

 

Figur 7 Visar gränssnittsgraf (under menyn "Statistics") som indikerar fördelningen av avfyrningsfrekvenser (x-axel) av 

neuroner i hjärnan. Grafens egenskaper kan ändras genom att klicka på den. 

 

Figur 8 Visar gränssnittsgraf (under menyn "Statistics") som indikerar fördelningen av avfyrningsfrekvenser (x-axel) av 

neuroner i hjärnan. Grafens egenskaper kan ändras genom att klicka på grafen. 
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Figur 9 Visar rastergraf (under menyn "Statistics") av neuroners avfyrningar. Varje prick är avfyrning.  X-axel är tid 

(närmast i tid till vänster), y-axel är neuronens ID-nummer. X-axelns omfång går att ändra genom att klicka på grafen. 

.  

Figur 10 Visar potentialgraf (neuron-fönster) av vald neurons spänning (y-axel) över tid (x-axel, nämasti i tid till vänster). 

Den mörka linjen markerar tröskelpotential.  

 

Figur 11 Visar synapsinformation (utsynaps-listan längs ner i neuron-fönster), för synapsen som går från neuronen med id 

229 till målneuronen med id 79. Grafen visar synapsstyrka (x-axel, närmast i tid till vänster) över tid. 

 
Figur 12 Visar de olika renderingslägena. Läge 1 visar spänning av synapser samt synapsernas typ (rosa är excitatoriska, 

blå är inhibitoriska). Läge 2 visar synaptisk styrka (rosa är excitatoriska, blå är inhibitoriska) med avfyrningssekvens som 

faktor (går att stänga av i meny) för att de viktigaste synapserna ska synas tydligast. Läge 3 visar avfyrningsfrekvens av 

presynaptisk/postsynaptisk neuron (beroende på ände av synapslinje). Läge 4 visar hur signalerna sprider sig från de 

markerade neuronerna. Detta tar hänsyn till synapsstyrka. Läge 5 renderar endast neuroner. 

Utöver dessa grafer finns det även ett antal olika renderingslägen som presenterar information i 

renderingen genom att ändra genomskinligheten av synapserna. De fem olika renderingslägena 

förklaras i Figur 12. Renderingsläget som visar avfyrningssekvenser har utökad funktionalitet (Figur 

13), som är användbart för analys då det illustrerar hur aktiverade vissa delar av hjärnan är i olika 
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tillstånd. Förändring av aktivitetsmönster i nätverket kan antingen ske på grund av att plasticiteten har 

förändrat hur signaler sprids, eller för att de inputs som kommer genom avfyrarna har förändrats. 

 
Figur 13 Visar menyn för renderingsläget som visar avfyrningsfrekvenser. Nuvarande värden kan sparas i variabler 

(bokstäverna) genom att klicka på den stora röda knappen. Dessa värden kan sedan bearbetas genom det aritmetiska uttryck 

som anges i textfältet, vars resultat visas i renderingen av synapserna. Det är även möjligt att återställa neuronernas aktivitet 

(Ctrl och klick på stora röda knappen), så ett nytt genomsnitt kan beräknas. 

2.5. Resultat 

2.5.1. 3 neuroner med 3 avfyrare 
3 neuroner placeras och kopplas ihop enligt Figur 14. Varje neuron har en avfyrare var, med 

avfyrningsfrekvensen 50 Hz. Frekvenserna för avfyrarna för neuronerna med ID 1 och 2, är förskjutna 

med +2, respektive -2 ms. Detta innebär att neuron 1 alltid kommer avfyra 2 ms efter neuron 0, och 

neuron 2 alltid kommer avfyra 2 ms före neuron 0. Alla neuroner simuleras vid varje körning, och 

resten av inställningarna har standardvärden. Programmet har namnet ”3_neurons_3_inputs.exe” i 

mappen som kan laddas ner från länken i Bilaga 2. 

 
Figur 14 Neuronen med ID 0 kopplar till neuronerna 1 och 2 (ensriktat) med synapser av styrkan 0.5. Varje neuron har 

varsin avfyrare med frekvensen 50 Hz. Impulserna från avfyrarna för neuronerna 1 och 2 är förskjutna med +2, samt -2 ms. 

Denna konfiguration resulterar i att synapsen från neuron 0 till 1 succesivt ökar tills styrkan 1.0 är 

nådd, och att synapsen från neuron 0 till 2 succesivt minskar tills styrkan 0.0 är nådd. Detta tar i snitt 

ca 120 ms simulationstid. På grund av bakgrundsaktivitet aktiveras neuronerna ibland slumpmässigt, 

vilket påverkar synapsstyrkorna, även om det i slutändan inte förändrar det slutgiltiga tillståndet. 

 

2.5.2. 750 neuroner med 1 avfyrare 
Här placeras en avfyrare på koordinaterna (2.0, 0.0, 0.0), med radien 0.8 och en konstant 

avfyrningsfrekvens av 35 Hz, i en hjärna med 750 neuroner. Alla andra inställningar har 
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standardvärden. Programmet har namnet ”750_neurons_1_input.exe”. De slumpmässiga variablerna 

utgår från nuvarande tid, och kommer av den anledningen att variera från körning till körning. Därför 

presenteras i denna resultatdel nätverkets normala uppförande, även om en specifik körnings 

uppförande kan variera. 

 

I början av simulationen är aktiviteten i hjärnan endast utlöst av bakgrundsavfyrningarna. Efter ca 15 

ms har dock en exponentiell fortplantning av impulserna initierats, som på kort tid aktiverar större 

delen av neuronerna i nätverket. Under detta stadie förskjuts majoriteten av de positiva 

synapsstyrkorna mot 0 (vilket kan avläsas över tid från grafen i Figur 8). Neuronernas aktivitet 

minskar även under ett förlopp av ca 160 ms. Vid denna tidpunkt fortplantar sig avfyrarens impulser 

endast ett kort avstånd innan de dör ut. Efter 5 sekunders simulationstid sprider sig impulserna från 

avfyraren till resten av hjärnan. Det uppstår även mindre områden av konstant aktivitet (se Figur 15), 

som sedan dör ut. 

  
Figur 15 Rastergraf efter 5 sekunders simulationstid av nätverk med en avfyrare. Det periodiska mönstret över tid uppstår 

när avfyraren (35 Hz) skickar impulser. De horisontella raderna visar neuroner som är del av mindre självbärande kretsar, 

och vars aktivitet därför är konstant. 

 

2.5.3. 750 neuroner med 3 avfyrare 
Detta test har samma konfiguration som det innan, med annat antal och ett annat beteende av 

avfyrarna. Programmet heter ”750_neurons_3_inputs.exe”. Tre avfyrare med radien 0.8 placeras i en 

liksidig triangel med ett avstånd av 2 från centrum av nätverket (origo). Avfyrare 0 och 1 har alltid 

samma avfyrningsfrekvens. De initiala avfyrningsfrekvenserna för avfyrare 0 och 1, samt 2, är ett 

slumpmässigt värde mellan 0 och 75 Hz. Varje millisekund uppdateras avfyrningsfrekvenserna genom 

att addera ett slumpmässigt värde mellan -1 och 1, men kan inte gå under eller över värdena 0 

respektive 75 Hz. Vid 10.0 sekunder påbörjas mätningarna. Inlärningsfaktorn (fg i avsnitt 2.3 

Implementering) blir 0, vilket stänger av inlärningen så att mätningarna inte påverkar hjärnans 

beteende. Under perioden 10.0 till 10.2 sekunder blir alla avfyrningssekvenser 0, och mellan perioden 

10.2 och 10.6 sekunder får endast avfyrare 2 frekvensen 50 Hz. Mellan 10.6 till 10.8 sekunder slås åter 

igen alla avfyrare av, och mellan perioden 10.8 och 11.2 sekunder så får avfyrare 0 och 2 frekvensen 

50 Hz. 

 

Även här övergår nätverket efter ca 15 ms till global konstant aktivitet, vilket får synapsstyrkorna att 

sjunka. Resultatet av mätningarna efter 10 sekunder redovisas nedan. 
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Figur 16 (a.) Visar hjärnans aktivitet under perioden 10.2 till 10.6 sekunder, då endast avfyraren med ID 2 är aktiv (50 Hz). 

Avfyrarnas ID i förhållande till position gäller även för resten av figuren. (b.) Visar hjärnans aktivitet under perioden 10.8 

till 11.2 sekunder, då avfyrarna 0 och 1 är aktiva (båda 50 Hz). (c.) Visar hjärnans aktivitet i a. subtraherat med hjärnans 

aktivitet i b (verktyget i Figur 13 används). Här syns alltså de neuroner som avfyrades under endast perioden i a. som rosa, 

och de endast under perioden i b. som blå. (d.) Visar aktiviteten i a. multiplicerat med aktiviteten i b. Detta visar de områden 

som är aktiva under båda perioderna. 

3. Analys och diskussion 
Tanken bakom simulationskonfigurationen i avsnitt 2.5.1 var att till viss del efterlikna det verkliga 

experimentet gjort i rapporten ”Synaptic Modifications in Cultured Hippocampal Neurons: 

Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type”. 8 Här har två fysiska 

neuroner med en synaps mellan stimulerats regelbundet och synkroniserat, med ett visst intervall 

tidsskillnad. Ett positivt tidsintervall, då den presynaptiska neuronen avfyras efter den postsynaptiska 

neuronen, resulterar i en gradvis ökning av den potential som synapsen orsakar i postsynaptiska 

neuronen, och ett negativt tidsintervall ger istället en minskning. I simulationen görs samma sak, även 

om det för enkelhetens skull är synapsstyrkan som mäts direkt istället för resulterande potential. 

Resultatet visar att denna simulationsmodell stämmer överens med verkligheten (inom ramarna av 

detta test). Detta betyder dock inte att alla aspekter av plasticiteten modelleras. Till exempel så beror i 

verkligheten förändringen i synapsstyrka även på själva synapsstyrkan. En svag synaps har enklare att 

bli starkare än en redan stark synaps.8 Jag har valt att inte inkludera detta för att inte komplicera 

analysen samt för att inte göra det svårare att balansera hjärnans aktivitetsnivå. De inhibitoriska 

synapsernas uppförande är inte baserat på någon verklig studie, utan följer samma regler som de 

excitatoriska synapserna. Allmänna och enkla regler som alltid gäller är inom programmering en bra 

taktik för att undvika buggar, och bidrar till ett robustare system som ofta också är enklare att förstå. 

Detta resulterar dock i ett dilemma när man modellerar biologiska system. Evolutionen har en förmåga 

och en tendens att konstruera system med en hög komplexitet, som därmed är svåra att modellera med 

exakthet. Därför krävs det att jag som programmerare dels gör bedömningen till vilken detaljnivå 

simuleringen bör modellera, samt vilka delar av de biologiska systemen som går att förenkla. Att 

använda ett kontinuerligt system för synapsstyrkorna, i stället för att simulera olika typer och mängder 

av neurotransmittorer är en sådan förenkling. Den digitala domänen ger ofta friare spelregler än den 

fysiska, vilket innebär att digitala system ofta inte kräver samma komplexitet som de biologiska för att 

uppnå samma funktionalitet. Det finns dock andra begräsningar med de digitala systemen, så som 

datorkraft, som man som programmerare behöver ta hänsyn till.  

 

Simulationskonfigurationen i 2.5.2 visar att nätverket själv kan motverka den återkoppling av impulser 

som till en början orsakar den kaosartade konstanta aktiviteten i hela hjärnan. Det är kaoset som gör 

det omöjligt för en synaps att konsekvent avfyras före dess målneuron, vilket gör att alla synapser 

försvagas. Det går även att se hur impulserna från avfyraren fortplantar sig till allt större delar av 

nätverket. Trots att det alltid går en synaps i vardera riktning, så betyder STDP-plasticiteten att bara en 

av dessa synapser kommer bli stark, samtidigt som den andra blir svag. Detta innebär att avfyrarens 

impulser enkelriktas ut från själva avfyraren. Beslutet att lägga till bakgrundsaktivitet kom sent i 

arbetet, men visade sig vara nyckeln till att få det område som avfyrarnas impulser fortplantar sig till 

 
8Guo-qiang Bi, Mu-ming Poo. Synaptic Modifications in Cultured Hippocampal Neurons: 
Dependence on Spike Timing, Synaptic Strength, and 
Postsynaptic Cell Type. The Journal of Neuroscience. 1998. PMID: 9852584. 
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att expandera över tid. Bakgrundsavfyrningar i inaktiva eller redan aktiva delar av nätverket påverkar 

sällan synapsstyrkorna. Om dock en bakgrundsavfyrning sker i en inaktiv neuron vid gränsen av 

avfyrarens aktiva område så sker två möjliga saker beroende på om bakgrundsavfyrningen sker direkt 

före eller efter att avfyrarens impuls anländer. Om den sker direkt före så försvagas synapsen mellan 

den aktiva och den inaktiva synapsen något, vilket i sin tur inte leder till något. Om den sker direkt 

efter så stärks synapsen, vilket i sin tur kan leda till att den aktiva neuronen själv kan avfyra den 

tidigare inaktiva neuronen, vilket leder till att synapsen stärks ytterligare. Nettoeffekten av detta är att 

det är mer troligt att bakgrundsaktiviteten leder till att avfyrarens aktiva område blir större än mindre. 

Dock så uppstår det områden av bara ett fåtal neuroner, som alltid är aktiva. Detta för att signalerna 

återkopplar, och därmed blir självbärande. Både formandet och destruktionen av dessa kretsar verkar 

triggas av bakgrundsaktiviteten, men hur de fungerar och kan motverkas behövs undersökas vidare. En 

ide är att införa ett energisystem, som ”utmattar” annars evigt aktiva neuroner. 

 

Det sista experimentet, i avsnitt 2.5.3, har syftet att testa frågeställningen: kan systemet bygga upp en 

intern intuitiv modell av sambanden mellan dess inputvärden? Hjärnan ges tre inputs (genom 

avfyrarna), varav två är länkade (avfyras alltid samtidigt). Det faktum att de två avfyrarna som är 

länkade, kopplas ihop och isoleras från den icke länkande avfyraren (Figur 16), visar att hjärnan har 

hittat och förstår sambandet. Detta bekräftar frågeställningen, även om det inte säger mycket om i 

vilken utsträckning hjärnan faktiskt kan göra detta. För att mäta detta skulle det till exempel gå att öka 

antalet inputs. Skulle hjärnan reda ut sambanden mellan 10 avfyrare? Det går även att komplicera 

typen av samband mellan input-värdena, genom att till exempel fördröja tiden mellan att två avfyrare 

aktiveras, eller genom att utnyttja den temporala kodning som systemet tillåter. I princip så bör detta 

nätverk kunna finna en lång rad av olika sorters orsakssamband. Genom att mata in pixelvärden från 

en bild som inputs, så skulle nätverket sannolikt lära sig klassificera mellan olika objekt i bilden. Ett 

hinder för detta är dock beräkningsintensitet, som ökar skarpt med antal neuroner. En mängd 

beräkningsmässiga optimeringar skulle kunna utföras, även om det ibland skulle vara på bekostnad av 

den biologiska modelleringens verklighetstrogenhet. Att implementera ett sorts belöningssystem skulle 

vara ett givet nästa steg för detta projekt, då detta skulle ge möjligheten att låta hjärnan styra virtuella 

agenter för att lösa andra problem än att hitta samband. En annan möjlig riktning är att träna upp en 

sorts allmänbildning hos en given hjärna, vilket var den ursprungliga avsikten med arbetet. Detta 

system skulle då bli ett sätt att låta datorer själva utveckla en grundläggande intuitiv förståelse av 

koncept som fysik och psykologi. 
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5. Bilagor 
Bilaga 1 - GitHub projektlänk 
https://github.com/Axelwickm/NeuroCorrelation/tree/Snapshot 
 

Bilaga 2 - Förkomplilerade exempel nerladdning 
https://drive.google.com/drive/folders/0B56HcM6Y9mY5VkNWQnY4S0xCRms?usp=sharing 

 

Bilaga 3 - Ett enkelt program som först skapar en hjärna med 100 neuroner, och sedan 

öppnar ett fönster som visar när denna hjärna renderas. 
 
#include <NeuCor.h> 
#include <NeuCor_Renderer.h> 
 
int main(){ 
 
    // Initerar hjärnobjekt med 100 neuroner 
    NeuCor brain(100); 
 
    // Skapar en array med 3 float-värden 
    float inputs[] = {20.0, 2.5, 150.0}; 
 
    // Ger denna array till hjänan 
    brain.setInputRateArray(inputs, 3); 
 
    // Sätter tidsteg till 0.05 ms per körning 
    brain.runSpeed = 0.05; 
 
    // Gör så att alla neuroner alltid simuleras vid körning 
    brain.runAll = true; 
 
    // Initierar renderare och ger den minnesadressen till hjärnan 
    NeuCor_Renderer renderer(&brain); 
 
 
 
    // Stiger in i en loop som körs så länge som fönster ska vara öppet 
    while (true){ 
 
        // Simulerar hjärnan 
        brain.run(); 
 
        // Hämtar användarhandlingar 
        renderer.pollWindow(); 
 
        // Ritar ut på skärmen 
        renderer.updateView(); 
    } 
 
    return 0; 
} 
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